57 research outputs found

    Decomposable log-linear models

    Get PDF

    Efficient Forward Simulation of Fisher-Wright Populations with Stochastic Population Size and Neutral Single Step Mutations in Haplotypes

    Full text link
    In both population genetics and forensic genetics it is important to know how haplotypes are distributed in a population. Simulation of population dynamics helps facilitating research on the distribution of haplotypes. In forensic genetics, the haplotypes can for example consist of lineage markers such as short tandem repeat loci on the Y chromosome (Y-STR). A dominating model for describing population dynamics is the simple, yet powerful, Fisher-Wright model. We describe an efficient algorithm for exact forward simulation of exact Fisher-Wright populations (and not approximative such as the coalescent model). The efficiency comes from convenient data structures by changing the traditional view from individuals to haplotypes. The algorithm is implemented in the open-source R package 'fwsim' and is able to simulate very large populations. We focus on a haploid model and assume stochastic population size with flexible growth specification, no selection, a neutral single step mutation process, and self-reproducing individuals. These assumptions make the algorithm ideal for studying lineage markers such as Y-STR.Comment: 17 pages, 6 figure

    A gentle introduction to the discrete Laplace method for estimating Y-STR haplotype frequencies

    Full text link
    Y-STR data simulated under a Fisher-Wright model of evolution with a single-step mutation model turns out to be well predicted by a method using discrete Laplace distributions.Comment: 18 pages, 5 figure

    Order quantity distributions:Estimating an adequate aggregation horizon

    Get PDF
    In this paper an investigation into the demand, faced by a company in the form of customer orders, is performed both from an explorative numerical and analytical perspective. The aim of the research is to establish the behavior of customer orders in first-come-first-serve (FCFS) systems and the impact of order quantity variation on the planning environment. A discussion of assumptions regarding demand from various planning and control perspectives underlines that most planning methods are based on the assumption that demand in the form of customer orders are independently identically distributed and stem from symmetrical distributions. To investigate and illustrate the need to aggregate demand to live up to these assumptions, a simple methodological framework to investigate the validity of the assumptions and for analyzing the behavior of orders is developed. The paper also presents an analytical approach to identify the aggregation horizon needed to achieve a stable demand. Furthermore, a case study application of the presented framework is presented and concluded on

    sparta: Sparse Tables and their Algebra with a View Towards High Dimensional Graphical Models

    Full text link
    A graphical model is a multivariate (potentially very high dimensional) probabilistic model, which is formed by combining lower dimensional components. Inference (computation of conditional probabilities) is based on message passing algorithms that utilize conditional independence structures. In graphical models for discrete variables with finite state spaces, there is a fundamental problem in high dimensions: A discrete distribution is represented by a table of values, and in high dimensions such tables can become prohibitively large. In inference, such tables must be multiplied which can lead to even larger tables. The sparta package meets this challenge by implementing methods that efficiently handles multiplication and marginalization of sparse tables. The package was written in the R programming language and is freely available from the Comprehensive R Archive Network (CRAN). The companion package jti, also on CRAN, was developed to showcase the potential of sparta in connection to the Junction Tree Algorithm. We show, that jti is able to handle highly complex graphical models which are otherwise infeasible due to lack of computer memory, using sparta as a backend for table operations
    • …
    corecore