59 research outputs found

    Catch crop strategy and nitrate leaching following grazed grass-clover

    Get PDF
    Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0,60 or 120 kg of ammonium-N ha-1 in cattle slurry. In spring 2003, two grass-clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley⁄perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley⁄Italian ryegrass reduced leaching by 163–320 kg Nha-1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg Nha-1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catchcrops was reduced compared with the bare soil treatment. It was concluded that the green barley⁄Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers

    Maximal entropy random walk in community finding

    Full text link
    The aim of this paper is to check feasibility of using the maximal-entropy random walk in algorithms finding communities in complex networks. A number of such algorithms exploit an ordinary or a biased random walk for this purpose. Their key part is a (dis)similarity matrix, according to which nodes are grouped. This study encompasses the use of the stochastic matrix of a random walk, its mean first-passage time matrix, and a matrix of weighted paths count. We briefly indicate the connection between those quantities and propose substituting the maximal-entropy random walk for the previously chosen models. This unique random walk maximises the entropy of ensembles of paths of given length and endpoints, which results in equiprobability of those paths. We compare performance of the selected algorithms on LFR benchmark graphs. The results show that the change in performance depends very strongly on the particular algorithm, and can lead to slight improvements as well as significant deterioration.Comment: 7 pages, 4 figures, submitted to European Physical Journal Special Topics following the 4-th Conference on Statistical Physics: Modern Trends and Applications, July 3-6, 2012 Lviv, Ukrain

    Markov Chain Methods For Analyzing Complex Transport Networks

    Full text link
    We have developed a steady state theory of complex transport networks used to model the flow of commodity, information, viruses, opinions, or traffic. Our approach is based on the use of the Markov chains defined on the graph representations of transport networks allowing for the effective network design, network performance evaluation, embedding, partitioning, and network fault tolerance analysis. Random walks embed graphs into Euclidean space in which distances and angles acquire a clear statistical interpretation. Being defined on the dual graph representations of transport networks random walks describe the equilibrium configurations of not random commodity flows on primary graphs. This theory unifies many network concepts into one framework and can also be elegantly extended to describe networks represented by directed graphs and multiple interacting networks.Comment: 26 pages, 4 figure

    On the spherical-axial transition in supernova remnants

    Full text link
    A new law of motion for supernova remnant (SNR) which introduces the quantity of swept matter in the thin layer approximation is introduced. This new law of motion is tested on 10 years observations of SN1993J. The introduction of an exponential gradient in the surrounding medium allows to model an aspherical expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR, SN1987a, are modeled. In the case of SN1987a the three observed rings are simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics & Space Science in the year 201

    Personal identity (de)formation among lifestyle travellers: A double-edged sword?

    Get PDF
    This article explores the personal identity work of lifestyle travellers – individuals for whom extended leisure travel is a preferred lifestyle that they return to repeatedly. Qualitative findings from in-depth semi-structured interviews with lifestyle travellers in northern India and southern Thailand are interpreted in light of theories on identity formation in late modernity that position identity as problematic. It is suggested that extended leisure travel can provide exposure to varied cultural praxes that may contribute to a sense of social saturation. Whilst a minority of the respondents embraced a saturation of personal identity in the subjective formation of a cosmopolitan cultural identity, several of the respondents were paradoxically left with more identity questions than answers as the result of their travels

    Cosmic-ray acceleration in supernova remnants: non-linear theory revised

    Full text link
    A rapidly growing amount of evidences, mostly coming from the recent gamma-ray observations of Galactic supernova remnants (SNRs), is seriously challenging our understanding of how particles are accelerated at fast shocks. The cosmic-ray (CR) spectra required to account for the observed phenomenology are in fact as steep as E2.2E2.4E^{-2.2}--E^{-2.4}, i.e., steeper than the test-particle prediction of first-order Fermi acceleration, and significantly steeper than what expected in a more refined non-linear theory of diffusive shock acceleration. By accounting for the dynamical back-reaction of the non-thermal particles, such a theory in fact predicts that the more efficient the particle acceleration, the flatter the CR spectrum. In this work we put forward a self-consistent scenario in which the account for the magnetic field amplification induced by CR streaming produces the conditions for reversing such a trend, allowing --- at the same time --- for rather steep spectra and CR acceleration efficiencies (about 20%) consistent with the hypothesis that SNRs are the sources of Galactic CRs. In particular, we quantitatively work out the details of instantaneous and cumulative CR spectra during the evolution of a typical SNR, also stressing the implications of the observed levels of magnetization on both the expected maximum energy and the predicted CR acceleration efficiency. The latter naturally turns out to saturate around 10-30%, almost independently of the fraction of particles injected into the acceleration process as long as this fraction is larger than about 10410^{-4}.Comment: 24 pages, 5 figures, accepted for publication in JCA

    Spectra of complex networks

    Full text link
    We propose a general approach to the description of spectra of complex networks. For the spectra of networks with uncorrelated vertices (and a local tree-like structure), exact equations are derived. These equations are generalized to the case of networks with correlations between neighboring vertices. The tail of the density of eigenvalues ρ(λ)\rho(\lambda) at large λ|\lambda| is related to the behavior of the vertex degree distribution P(k)P(k) at large kk. In particular, as P(k)kγP(k) \sim k^{-\gamma}, ρ(λ)λ12γ\rho(\lambda) \sim |\lambda|^{1-2\gamma}. We propose a simple approximation, which enables us to calculate spectra of various graphs analytically. We analyse spectra of various complex networks and discuss the role of vertices of low degree. We show that spectra of locally tree-like random graphs may serve as a starting point in the analysis of spectral properties of real-world networks, e.g., of the Internet.Comment: 10 pages, 4 figure

    Understanding hadronic gamma-ray emission from supernova remnants

    Full text link
    We aim to test the plausibility of a theoretical framework in which the gamma-ray emission detected from supernova remnants may be of hadronic origin, i.e., due to the decay of neutral pions produced in nuclear collisions involving relativistic nuclei. In particular, we investigate the effects induced by magnetic field amplification on the expected particle spectra, outlining a phenomenological scenario consistent with both the underlying Physics and the larger and larger amount of observational data provided by the present generation of gamma experiments, which seem to indicate rather steep spectra for the accelerated particles. In addition, in order to study to study how pre-supernova winds might affect the expected emission in this class of sources, the time-dependent gamma-ray luminosity of a remnant with a massive progenitor is worked out. Solid points and limitations of the proposed scenario are finally discussed in a critical way.Comment: 30 pages, 5 figures; Several comments, references and a figure added. Some typos correcte

    Background model systematics for the Fermi GeV excess

    Full text link
    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2<b<202^\circ<|b|<20^\circ and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95%95\% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.010.0^\circ (95%95\% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy 2.1±0.22.1\pm0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of bˉb\bar{b}b final states a dark matter mass of 495.4+6.449^{+6.4}_{-5.4} GeV.Comment: 65 pages, 28 figures, 7 table
    corecore