9 research outputs found

    Biochemical and Biophysical Characterization of Recombinant Human 3-Phosphoglycerate Dehydrogenase

    Get PDF
    The human enzyme D-3-phosphoglycerate dehydrogenase (hPHGDH) catalyzes the reversible dehydrogenation of 3-phosphoglycerate (3PG) into 3-phosphohydroxypyruvate (PHP) using the NAD+/NADH redox cofactor, the first step in the phosphorylated pathway producing L-serine. We focused on the full-length enzyme that was produced in fairly large amounts in E. coli cells; the effect of pH, temperature and ligands on hPHGDH activity was studied. The forward reaction was investigated on 3PG and alternative carboxylic acids by employing two coupled assays, both removing the product PHP; 3PG was by far the best substrate in the forward direction. Both PHP and α-ketoglutarate were efficiently reduced by hPHGDH and NADH in the reverse direction, indicating substrate competition under physiological conditions. Notably, neither PHP nor L-serine inhibited hPHGDH, nor did glycine and D-serine, the coagonists of NMDA receptors related to L-serine metabolism. The investigation of NADH and phosphate binding highlights the presence in solution of different conformations and/or oligomeric states of the enzyme. Elucidating the biochemical properties of hPHGDH will enable the identification of novel approaches to modulate L-serine levels and thus to reduce cancer progression and treat neurological disorders

    Discovery of a New, Recurrent Enzyme in Bacterial Phosphonate Degradation: (R)‑1-Hydroxy-2-aminoethylphosphonate Ammonia-lyase

    Get PDF
    Phosphonates represent an important source of bioavailable phosphorus in certain environments. Accordingly, many microorganisms (particularly marine bacteria) possess catabolic pathways to degrade these molecules. One example is the widespread hydrolytic route for the breakdown of 2-aminoethylphosphonate (AEP, the most common biogenic phosphonate). In this pathway, the aminotransferase PhnW initially converts AEP into phosphonoacetaldehyde (PAA), which is then cleaved by the hydrolase PhnX to yield acetaldehyde and phosphate. This work focuses on a pyridoxal-5’-phosphate-dependent enzyme that is encoded in over 13 % of the bacterial gene clusters containing the phnW-phnX combination. This enzyme (which we termed PbfA) is annotated as a transaminase, but there is no obvious need for an additional transamination reaction in the established AEP degradation pathway. We report here that PbfA from the marine bacterium Vibrio splendidus catalyzes an elimination reaction on the naturally occurring compound (R)-1-hydroxy-2-aminoethylphosphonate (R-HAEP). The reaction releases ammonia and generates PAA, which can be then hydrolyzed by PhnX. In contrast, PbfA is not active towards the (S) enantiomer of HAEP or other HAEP-related compounds such as ethanolamine and D,L-isoserine, indicating a very high substrate specificity. We also show that R-HAEP (despite being structurally similar to AEP) is not processed efficiently by the PhnW-PhnX couple in the absence of PbfA. In sum, the reaction catalyzed by PbfA serves to funnel R-HAEP into the hydrolytic pathway for AEP degradation, expanding the scope and the usefulness of the pathway itself

    A Novel Assay for Phosphoserine Phosphatase Exploiting Serine Acetyltransferase as the Coupling Enzyme

    No full text
    Phosphoserine phosphatase (PSP) catalyzes the final step of de novo L-serine biosynthesis—the hydrolysis of phosphoserine to serine and inorganic phosphate—in humans, bacteria, and plants. In published works, the reaction is typically monitored through the discontinuous malachite green phosphate assay or, more rarely, through a continuous assay that couples phosphate release to the phosphorolysis of a chromogenic nucleoside by the enzyme purine nucleoside phosphorylase (PNP). These assays suffer from numerous drawbacks, and both rely on the detection of phosphate. We describe a new continuous assay that monitors the release of serine by exploiting bacterial serine acetyltransferase (SAT) as a reporter enzyme. SAT acetylates serine, consuming acetyl-CoA and releasing CoA-SH. CoA-SH spontaneously reacts with Ellman’s reagent to produce a chromophore that absorbs light at 412 nm. The catalytic parameters estimated through the SAT-coupled assay are fully consistent with those obtained with the published methods, but the new assay exhibits several advantages. Particularly, it depletes L-serine, thus allowing more prolonged linearity in the kinetics. Moreover, as the SAT-coupled assay does not rely on phosphate detection, it can be used to investigate the inhibitory effect of phosphate on PSP

    Off to a slow start: Analyzing lag phases and accelerating rates in steady-state enzyme kinetics.

    No full text
    Steady-state enzyme kinetics typically relies on the measurement of 'initial rates', obtained when the substrate is not significantly consumed and the amount of product formed is negligible. Although initial rates are usually faster than those measured later in the reaction time-course, sometimes the speed of the reaction appears instead to increase with time, reaching a steady level only after an initial delay or 'lag phase'. This behavior needs to be interpreted by the experimentalists. To assist interpretation, this article analyzes the many reasons why, during an enzyme assay, the observed rate can be slow in the beginning and then progressively accelerate. The possible causes range from trivial artifacts to instances in which deeper mechanistic or biophysical factors are at play. We provide practical examples for most of these causes, based firstly on experiments conducted with ornithine δ-aminotransferase and with other pyridoxal-phosphate dependent enzymes that have been studied in our laboratory. On the side to this survey, we provide evidence that the product of the ornithine δ-aminotransferase reaction, glutamate 5-semialdehyde, cyclizes spontaneously to pyrroline 5-carboxylate with a rate constant greater than 3 s

    Human cytosolic transaminases: side activities and patterns of discrimination towards physiologically available alternative substrates

    No full text
    Transaminases play key roles in central metabolism, transferring the amino group from a donor substrate to an acceptor. These enzymes can often act, with low efficiency, on compounds different from the preferred substrates. To understand what might have shaped the substrate specificity of this class of enzymes, we examined the reactivity of six human cytosolic transaminases towards amino acids whose main degradative pathways do not include any transamination. We also tested whether sugars and sugar phosphates could serve as alternative amino group acceptors for these cytosolic enzymes. Each of the six aminotransferases reacted appreciably with at least three of the alternative amino acid substrates in vitro, albeit at usually feeble rates. Reactions with L-Thr, L-Arg, L-Lys and L-Asn were consistently very slow-a bias explained in part by the structural differences between these amino acids and the preferred substrates of the transaminases. On the other hand, L-His and L-Trp reacted more efficiently, particularly with GTK (glutamine transaminase K; also known as KYAT1). This points towards a role of GTK in the salvage of L-Trp (in cooperation with ω-amidase and possibly with the cytosolic malate dehydrogenase, MDH1, which efficiently reduced the product of L-Trp transamination). Finally, the transaminases were extremely ineffective at utilizing sugars and sugar derivatives, with the exception of the glycolytic intermediate dihydroxyacetone phosphate, which was slowly but appreciably transaminated by some of the enzymes to yield serinol phosphate. Evidence for the formation of this compound in a human cell line was also obtained. We discuss the biological and evolutionary implications of our results

    L-serine biosynthesis in the human central nervous system: Structure and function of phosphoserine aminotransferase

    No full text
    Organisms from all kingdoms of life synthesize L-serine (L-Ser) from 3-phosphoglycerate through the phosphorylated pathway, a three-step diversion of glycolysis. Phosphoserine aminotransferase (PSAT) catalyzes the intermediate step, the pyridoxal 5 '-phosphate-dependent transamination of 3-phosphohydroxypyruvate and L-glutamate to O-phosphoserine (OPS) and alpha-ketoglutarate. PSAT is particularly relevant in the central nervous system of mammals because L-Ser is the metabolic precursor of D-serine, cysteine, phospholipids, and nucleotides. Several mutations in the human psat gene have been linked to serine deficiency disorders, characterized by severe neurological symptoms. Furthermore, PSAT is overexpressed in many tumors and this overexpression has been associated with poor clinical outcomes. Here, we report the detailed functional and structural characterization of the recombinant human PSAT. The reaction catalyzed by PSAT is reversible, with an equilibrium constant of about 10, and the enzyme is very efficient, with a k(cat)/K-m of 5.9 x 10(6) M-1 s(-1), thus contributing in driving the pathway towards the products despite the extremely unfavorable first step catalyzed by 3-phosphoglycerate dehydrogenase. The 3D X-ray crystal structure of PSAT was solved in the substrate-free as well as in the OPS-bound forms. Both structures contain eight protein molecules in the asymmetric unit, arranged in four dimers, with a bound cofactor in each subunit. In the substrate-free form, the active site of PSAT contains a sulfate ion that, in the substrate-bound form, is replaced by the phosphate group of OPS. Interestingly, fast crystal soaking used to produce the substrate-bound form allowed the trapping of different intermediates along the catalytic cycle

    Human cytosolic transaminases: side activities and patterns of discrimination towards physiologically available alternative substrates

    No full text
    Transaminases play key roles in central metabolism, transferring the amino group from a donor substrate to an acceptor. These enzymes can often act, with low efficiency, on compounds different from the preferred substrates. To understand what might have shaped the substrate specificity of this class of enzymes, we examined the reactivity of six human cytosolic transaminases towards amino acids whose main degradative pathways do not include any transamination. We also tested whether sugars and sugar phosphates could serve as alternative amino group acceptors for these cytosolic enzymes. Each of the six aminotransferases reacted appreciably with at least three of the alternative amino acid substrates in vitro, albeit at usually feeble rates. Reactions with L-Thr, L-Arg, L-Lys and L-Asn were consistently very slow—a bias explained in part by the structural differences between these amino acids and the preferred substrates of the transaminases. On the other hand, L-His and L-Trp reacted more efficiently, particularly with GTK (glutamine transaminase K; also known as KYAT1). This points towards a role of GTK in the salvage of L-Trp (in cooperation with ω-amidase and possibly with the cytosolic malate dehydrogenase, MDH1, which efficiently reduced the product of L-Trp transamination). Finally, the transaminases were extremely ineffective at utilizing sugars and sugar derivatives, with the exception of the glycolytic intermediate dihydroxyacetone phosphate, which was slowly but appreciably transaminated by some of the enzymes to yield serinol phosphate. Evidence for the formation of this compound in a human cell line was also obtained. We discuss the biological and evolutionary implications of our results
    corecore