43 research outputs found
Analysis of anisotropic pore structures using terahertz spectroscopy and imaging
This study demonstrates the analysis of anisotropic pore structures of highly porous pharmaceutical powder compacts by combining terahertz time-domain spectroscopy and in-situ measurements of the liquid penetration using terahertz pulsed imaging
On the role of API in determining porosity, pore structure and bulk modulus of the skeletal material in pharmaceutical tablets formed with MCC as sole excipient
The physical properties and mechanical integrity of pharmaceutical tablets are of major importance when loading with active pharmaceutical ingredient(s) (API) in order to ensure ease of processing, control of dosage and stability during transportation and handling prior to patient consumption. The interaction between API and excipient, acting as functional extender and binder, however, is little understood in this context. The API indomethacin is combined in this study with microcrystalline cellulose (MCC) at increasing loading levels. Tablets from the defined API/MCC ratios are made under conditions of controlled porosity and tablet thickness, resulting from different compression conditions, and thus compaction levels. Mercury intrusion porosimetry is used to establish the accessible pore volume, pore size distribution and, adopting the observed region of elastic intrusion-extrusion at high pressure, an elastic bulk modulus of the skeletal material is recorded. Porosity values are compared to previously published values derived from terahertz (THz) refractive index data obtained from exactly the same tablet sample sets. It is shown that the elastic bulk modulus is dependent on API wt% loading under constant tablet preparation conditions delivering equal dimensions and porosity. The findings are considered of novel value in respect to establishing consistency of tablet production and optimisation of physical properties
A structure parameter for porous pharmaceutical tablets obtained with the aid of Wiener bounds for effective permittivity and terahertz time-delay measurement.
A structure parameter that can be used to predict the pattern of arrangement of porous inclusions in pharmaceutical tablets is introduced. By utilizing the effective refractive index of a pharmaceutical tablet obtained from terahertz time-domain measurements, we have shown that there exists a promising correlation between the calculated structural parameter and the porosity of training sets of pharmaceutical tablets, having well-defined characterization. Knowing of the structural arrangement, i.e. combined constituent skeletal-pore elements in series, parallel or mixed within porous media, could serve as a basis for understanding the ingress and permeation of liquids in such media. In the realm of pharmaceutical applications, such knowledge of the structural arrangement of air voids within a medicinal tablet could enable correlation with mechanical strength and dissolution behaviour in aqueous systems.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.ijpharm.2016.04.02
Simultaneous investigation of the liquid transport and swelling performance during tablet disintegration.
Fast disintegrating tablets have commonly been used for fast oral drug delivery to patients with swallowing difficulties. The different characteristics of the pore structure of such formulations influence the liquid transport through the tablet and hence affect the disintegration time and the release of the drug in the body. In this work, terahertz time-domain spectroscopy and terahertz pulsed imaging were used as promising analytical techniques to quantitatively analyse the impact of the structural properties on the liquid uptake and swelling rates upon contact with the dissolution medium. Both the impact of porosity and formulation were investigated for theophylline and paracetamol based tablets. The drug substances were either formulated with functionalised calcium carbonate (FCC) with porosities of 45% and 60% or with microcrystalline cellulose (MCC) with porosities of 10% and 25%. The terahertz results reveal that the rate of liquid uptake is clearly influenced by the porosity of the tablets with a faster liquid transport observed for tablets with higher porosity, indicating that the samples exhibit structural similarity in respect to pore connectivity and pore size distribution characteristics in respect to permeability. The swelling of the FCC based tablets is fully controlled by the amount of disintegrant, whereas the liquid uptake is driven by the FCC material and the interparticle pores created during compaction. The MCC based formulations are more complex as the MCC significantly contributes to the overall tablet swelling. An increase in swelling with increasing porosity is observed in these tablets, which indicates that such formulations are performance-limited by their ability to take up liquid. Investigating the effect of the microstructure characteristics on the liquid transport and swelling kinetics is of great importance for reaching the next level of understanding of the drug delivery, and, depending on the surface nature of the pore carrier function, in turn controlling the performance of the drug mainly in respect to dissolution in the body
Electronic g-factor and Magneto-transport in InSb Quantum Wells
High mobility InSb quantum wells with tunable carrier densities are
investigated by transport experiments in magnetic fields tilted with respect to
the sample normal. We employ the coincidence method and the temperature
dependence of the Shubnikov-de Haas oscillations and find a value for the
effective g-factor of =354 and a value for the
effective mass of , where is the electron mass in
vacuum. Our measurements are performed in a magnetic field and a density range
where the enhancement mechanism of the effective g-factor can be neglected.
Accordingly, the obtained effective g-factor and the effective mass can be
quantitatively explained in a single particle picture. Additionally, we explore
the magneto-transport up to magnetic fields of 35 T and do not find features
related to the fractional quantum Hall effect.Comment: 18 Pages, 5 Figure
A Case Study of Laser Wind Sensor Performance Validation by Comparison to an Existing Gage
A case study concerning validation of wind speed measurements made by a laser wind sensor mounted on a 190 square foot floating platform in Muskegon Lake through comparison with measurements made by pre-existing cup anemometers mounted on a met tower on the shore line is presented. The comparison strategy is to examine the difference in measurements over time using the paired-t statistical method to identify intervals when the measurements were equivalent and to provide explanatory information for the intervals when the measurements were not equivalent. The data was partitioned into three sets: not windy (average wind speed measured by the cup anemometers ≤ 6.7m/s) windy but no enhanced turbulence (average wind speed measured by the cup anemometers \u3e 6.7m/s), and windy with enhanced turbulence associated with storm periods. For the not windy data set, the difference in the average wind speeds was equal in absolute value to the precision of the gages and not statistically significant. Similar results were obtained for the windy with no enhanced turbulence data set and the average difference was not statistically significant (α=0.01). The windy with enhanced turbulence data set showed significant differences between the buoy mounted laser wind sensor and the on-shore mast mounted cup anemometers. The sign of the average difference depended on the direction of the winds. Overall, validation evidence is obtained in the absence of enhanced turbulence. In addition, differences in wind speed during enhanced turbulence were isolated in time, studied and explained
Investigating elastic relaxation effects on the optical properties of functionalised calcium carbonate compacts using optics-based Heckel analysis
Heckel analysis is a widely used method for the characterisation of the compression behaviour of pharmaceutical samples during the preparation of solid dosage formulations. The present study introduces an optical version of the Heckel equation that is based on a combination of the conventional Heckel equation together with the linear relationship defined between the effective terahertz (THz) refractive index and the porosity of pharmaceutical tablets. The proposed optical Heckel equation allows us to, firstly, calculate the zero-porosity refractive index, and, secondly, predict the in-die development of the effective refractive index as a function of the compressive pressure during tablet compression. This was demonstrated for five batches of highly porous functionalised calcium carbonate (FCC) excipient compacts. The close match observed between the estimated in-die effective refractive index and the measured/out-of-die effective THz refractive index supports the validity of the proposed form of the equation. By comparing the measured and estimated in-die tablet properties, a clear change in the porosity and hence, the effective refractive index, due to post-compression elastic relaxation of the FCC compacts, has been observed. We have, therefore, proposed a THz-based compaction setup that will permit in-line monitoring of processes during tablet compression. We envisage that this new approach in tracking powder properties introduced in this preliminary study will lead to the onset of further extensive and detailed future studies
Characterisation of pore structures of pharmaceutical tablets : a review
Traditionally, the development of a new solid dosage form is formulation-driven and less focus is put on the design of a specific microstructure for the drug delivery system. However, the compaction process particularly impacts the microstructure, or more precisely, the pore architecture in a pharmaceutical tablet. Besides the formulation, the pore structure is a major contributor to the overall performance of oral solid dosage forms as it directly affects the liquid uptake rate, which is the very first step of the dissolution process. In future, additive manufacturing is a potential game changer to design the inner structures and realise a tailor-made pore structure. In pharmaceutical development the pore structure is most commonly only described by the total porosity of the tablet matrix. Yet it is of great importance to consider other parameters to fully resolve the interplay between microstructure and dosage form performance. Specifically, tortuosity, connectivity, as well as pore shape, size and orientation all impact the flow paths and play an important role in describing the fluid flow in a pharmaceutical tablet. This review presents the key properties of the pore structures in solid dosage forms and it discusses how to measure these properties. In particular, the principles, advantages and limitations of helium pycnometry, mercury porosimetry, terahertz time-domain spectroscopy, nuclear magnetic resonance and X-ray computed microtomography are discussed
Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.
Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, Sa, to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectroscopy measurements. The Sa parameter analysis was applied to three different data sets including tablets with only one excipient (functionalised calcium carbonate), samples with one excipient (microcrystalline cellulose) and one drug (indomethacin), and a complex formulation (granulated product comprising several excipients and one drug). The overall porosity, tablet thickness, initial particle size distribution as well as the granule density were all found to affect the significant structural anisotropies that were observed in all investigated tablets. The Sa parameter provides new insights into the microstructure of a tablet and its potential was particularly demonstrated for the analysis of formulations comprising several components. The results clearly indicate that material attributes, such as particle size and granule density, cause a change of the pore structure, which, therefore, directly impacts the liquid imbibition that is part of the disintegration process. We show, for the first time, how the granule density impacts the pore structure, which will also affect the performance of the tablet. It is thus of great importance to gain a better understanding of the relationship of the physical properties of material attributes (e.g. intragranular porosity, particle shape), the compaction process and the microstructure of the finished product