35 research outputs found
Effect of Chronic Escitalopram versus Placebo on Personality Traits in Healthy First-Degree Relatives of Patients with Depression: A Randomized Trial
The serotonergic neurotransmitter system is closely linked to depression and personality traits. It is not known if selective serotonin reuptake inhibitors (SSRI) have an effect on neuroticism that is independent of their effect on depression. Healthy individuals with a genetic liability for depression represent a group of particular interest when investigating if intervention with SSRIs affects personality. The present trial is the first to test the hypothesis that escitalopram may reduce neuroticism in healthy first-degree relatives of patients with major depressive disorder (MD).The trial used a randomized, blinded, placebo-controlled parallel-group design. We examined the effect of four weeks escitalopram 10 mg daily versus matching placebo on personality in 80 people who had a biological parent or sibling with a history of MD. The outcome measure on personality traits was change in self-reported neuroticism scores on the Revised Neuroticism-Extroversion-Openness-Personality Inventory (NEO-PI-R) and the Eysenck Personality Inventory (EPQ) from entry until end of four weeks of intervention.When compared with placebo, escitalopram did not significantly affect self-reported NEO-PI-R and EPQ neuroticism and extroversion, EPQ psychoticism, NEO-PI-R openness, or NEO-PI-R conscientiousness (p all above 0.05). However, escitalopram increased NEO-PI-R agreeableness scores significantly compared with placebo (mean; SD) (2.38; 8.09) versus (-1.32; 7.94), p = 0.046), but not following correction for multiplicity. A trend was shown for increased conscientiousness (p = 0.07). There was no significant effect on subclinical depressive symptoms (p = 0.6).In healthy first-degree relatives of patients with MD, there is no effect of escitalopram on neuroticism, but it is possible that escitalopram may increase the personality traits of agreeableness and conscientiousness.Clinicaltrials.gov NCT00386841
The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates
Objective: To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. Methods: EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Results: Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins.Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate.By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation.ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Conclusions: Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates. Keywords: EndoC-βH1, Pseudoislets, Glucose stimulated insulin secretion, Somatostatin signaling, Proliferatio
Social-Skills and Parental Training plus Standard Treatment versus Standard Treatment for Children with ADHD – The Randomised SOSTRA Trial
To investigate the effects of social-skills training and parental training programme for children with attention deficit hyperactivity disorder (ADHD).We conducted a randomized two-armed, parallel group, assessor-blinded superiority trial consisting of social-skills training plus parental training and standard treatment versus standard treatment alone. A sample size calculation showed at least 52 children should be included for the trial with follow up three and six months after randomization. The primary outcome measure was ADHD symptoms and secondary outcomes were social skills and emotional competences. RESULTS 56: children (39 boys, 17 girls, mean age 10.4 years, SD 1.31) with ADHD were randomized, 28 to the experimental group and 27 to the control group. Mixed-model analyses with repeated measures showed that the time course (y = a + bt + ct(2)) of ADHD symptoms (p = 0.40), social skills (p = 0.80), and emotional competences (p = 0.14) were not significantly influenced by the intervention.Social skills training plus parental training did not show any significant benefit for children with attention deficit hyperactivity disorder when compared with standard treatment. More and larger randomized trials are needed.ClinicalTrials.gov NCT00937469
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia
Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies