153 research outputs found

    The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zel\u27dovich Array Observations of Act Sze-Selected Clusters from the Equatorial Strip

    Get PDF
    We present follow-up observations with the Sunyaev-Zel\u27dovich Array (SZA) of optically confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly discovered, massive (similar or equal to 10(15) M-circle dot), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zel\u27dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point-source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+ 0016, also known as A2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT\u27s frequency, we estimate that point sources could be contaminating the SZE decrement at the less than or similar to 20% level for some fraction of clusters

    Extracting Galaxy Cluster Gas Inhomogeneity from X-ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    Full text link
    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal distribution. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the density fluctuations and the X-ray surface brightness. We analyze \chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of two from their X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three dimensional inhomogeneity in galaxy clusters.Comment: 34 pages, 17 figures, accepted for publication in Ap

    Imaging the Thermal and Kinematic Sunyaev-Zel'dovich Effect Signals in a Sample of Ten Massive Galaxy Clusters: Constraints on Internal Velocity Structures and Bulk Velocities

    Get PDF
    We have imaged the Sunyaev-Zel'dovich (SZ) effect signals at 140 and 270 GHz towards ten galaxy clusters with Bolocam and AzTEC/ASTE. We also used Planck data to constrain the signal at large angular scales, Herschel-SPIRE images to subtract the brightest galaxies that comprise the cosmic infrared background (CIB), Chandra imaging to map the electron temperature TeT_e of the intra-cluster medium (ICM), and HST imaging to derive models of each galaxy cluster's mass density. The galaxy clusters gravitationally lens the background CIB, which produced an on-average reduction in brightness towards the galaxy clusters' centers after the brightest galaxies were subtracted. We corrected for this deficit, which was between 5-25% of the 270 GHz SZ effect signal within R2500R_{2500}. Using the SZ effect measurements, along with the X-ray constraint on TeT_e, we measured each galaxy cluster's average line of sight (LOS) velocity vzv_z within R2500R_{2500}, with a median per-cluster uncertainty of +-700 km/s. We found an ensemble-mean of 430+-210 km/s, and an intrinsic cluster-to-cluster scatter σint\sigma_{int} of 470+-340 km/s. We also obtained maps of vzv_z over each galaxy cluster's face with an angular resolution of 70". All four galaxy clusters previously identified as having a merger oriented along the LOS showed an excess variance in these maps at a significance of 2-4σ\sigma, indicating an internal vzv_z rms of ≳\gtrsim1000 km/s. None of the six galaxy clusters previously identified as relaxed or plane of sky mergers showed any such excess variance.Comment: Accepted for publication in Ap

    The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    Get PDF
    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8σ, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z\u3e1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z≈1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b=2.5±0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing cross-correlations to probe astrophysics at high redshifts

    Markov Chain Monte Carlo joint analysis of Chandra X-ray imaging spectroscopy and Sunyaev-Zeldovich Effect data

    Full text link
    X-ray and Sunyaev-Zeldovich Effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and Sunyaev-Zeldovich Effect data were obtained from the BIMA and OVRO arrays. We introduce a Markov chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in follow-up papers to determine the distances to a large sample of galaxy clusters.Comment: ApJ accepted, scheduled for ApJ 10 October 2004, v614 issue. Title changed, added more convergence diagnostic tests, Figure 7 converted to lower resolution for easier download, other minor change

    The X-ray Size-Temperature Relation for Intermediate Redshift Galaxy Clusters

    Get PDF
    We present the first measurements of the X-ray size-temperature (ST) relation in intermediate redshift (z~0.30) galaxy clusters. We interpret the local ST relation (z~0.06) in terms of underlying scaling relations in the cluster dark matter properties, and then we use standard models for the redshift evolution of those dark matter properties to show that the ST relation does not evolve with redshift. We then use ROSAT HRI observations of 11 clusters to examine the intermediate redshift ST relation; for currently favored cosmological parameters, the intermediate redshift ST relation is consistent with that of local clusters. Finally, we use the ST relation and our evolution model to measure angular diameter distances; with these 11 distances we evaluate constraints on Omega_M and Omega_L which are consistent with those derived from studies of Type Ia supernovae. The data rule out a model with Omega_M=1 and Omega_L=0 with 2.5 sigma confidence. When limited to models where Omega_M+Omega_L=1, these data are inconsistent with Omega_M=1 with 3 sigma confidence.Comment: ApJ: submitted April 7, accepted June 28, to appear Dec 1 (vol 544

    Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel'dovich Effect Observations with MUSTANG and Bolocam I: Joint Analysis Technique

    Get PDF
    We present a technique to constrain galaxy cluster pressure profiles by jointly fitting Sunyaev-Zel'dovich effect (SZE) data obtained with MUSTANG and Bolocam for the clusters Abell 1835 and MACS0647. Bolocam and MUSTANG probe different angular scales and are thus highly complementary. We find that the addition of the high resolution MUSTANG data can improve constraints on pressure profile parameters relative to those derived solely from Bolocam. In Abell 1835 and MACS0647, we find gNFW inner slopes of γ=0.36−0.21+0.33\gamma = 0.36_{-0.21}^{+0.33} and γ=0.38−0.25+0.20\gamma = 0.38_{-0.25}^{+0.20}, respectively when α\alpha and β\beta are constrained to 0.86 and 4.67 respectively. The fitted SZE pressure profiles are in good agreement with X-ray derived pressure profiles.Comment: 12 pages, 12 figures. Submitted to Ap
    • …
    corecore