4,092 research outputs found
The impact of physical space in the College Union and students\u27 sense of community on campus
The purpose of this study was to determine the impact that physical spaces in The Chamberlain Student Center had on participants\u27 sense of community on campus. A survey was distributed to 600 undergraduate students to determine the extent to which participants believed various locations within the facility either enhanced or diminished their sense of community on campus. Of the 600 surveys distributed, 73 responses were collected, yielding a response rate of 12%. Results show that there is no statistically significant relationship between any specific space in The Chamberlain Student Center. However, data showed that there is a relationship between students that are enrolled in more credit hours, students that report having a positive experience in The Chamberlain Student Center, and students that believe Rowan University does promote building campus community, and whether or not The Chamberlain Student Center plays a major role in building campus community
Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity.
Diverse lines of evidence suggest that amyloid-β (Aβ) peptides causally contribute to the pathogenesis of Alzheimer disease (AD), the most frequent neurodegenerative disorder. However, the mechanisms by which Aβ impairs neuronal functions remain to be fully elucidated. Previous studies showed that soluble Aβ oligomers interfere with synaptic functions by depleting NMDA-type glutamate receptors (NMDARs) from the neuronal surface and that overexpression of the receptor tyrosine kinase EphB2 can counteract this process. Through pharmacological treatments and biochemical analyses of primary neuronal cultures expressing wild-type or mutant forms of EphB2, we demonstrate that this protective effect of EphB2 depends on its PDZ-binding motif and the presence of neuronal activity but not on its kinase activity. We further present evidence that the protective effect of EphB2 may be mediated by the AMPA-type glutamate receptor subunit GluA2, which can become associated with the PDZ-binding motif of EphB2 through PDZ domain-containing proteins and can promote the retention of NMDARs in the membrane. In addition, we show that the Aβ-induced depletion of surface NMDARs does not depend on several factors that have been implicated in the pathogenesis of Aβ-induced neuronal dysfunction, including aberrant neuronal activity, tau, prion protein (PrP(C)), and EphB2 itself. Thus, although EphB2 does not appear to be directly involved in the Aβ-induced depletion of NMDARs, increasing its expression may counteract this pathogenic process through a neuronal activity- and PDZ-dependent regulation of AMPA-type glutamate receptors
The acute phase response and soman-induced status epilepticus: temporal, regional and cellular changes in rat brain cytokine concentrations
<p>Abstract</p> <p>Background</p> <p>Neuroinflammation occurs following brain injury, including soman (GD) induced status epilepticus (SE), and may contribute to loss of neural tissue and declined behavioral function. However, little is known about this important pathological process following GD exposure. Limited transcriptional information on a small number of brain-expressed inflammatory mediators has been shown following GD-induced SE and even less information on protein upregulation has been elucidated. The purpose of this study is to further characterize the regional and temporal progression of the neuroinflammatory process following acute GD-induced SE.</p> <p>Methods</p> <p>The protein levels of 10 cytokines was quantified using bead multiplex immunoassays in damaged brain regions (i.e., piriform cortex, hippocampus and thalamus) up to 72 hours following seizure onset. Those factors showing significant changes were then localized to neural cells using fluorescent IHC.</p> <p>Results</p> <p>A significant concentration increase was observed in all injured brain regions for four acute phase response (APR) induction cytokines: interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor (TNF)-α. Increases in these APR cytokines corresponded both temporally and regionally to areas of known seizure damage and neuronal death. Neurotoxic cytokines IL-1α and IL-1β were primarily expressed by activated microglia whereas the potentially neuroprotective cytokine IL-6 was expressed by neurons and hypertrophic astrocytes.</p> <p>Conclusions</p> <p>Increases in neurotoxic cytokines likely play an active role in the progression of GD-induced SE neuropathology though the exact role that these and other cytokines play in this process require further study.</p
Emittance in Nonlinear Thomson Scattering
Inverse Compton scattering sources are finding increasing use as intense sources of high-energy photons. When operated at high field strength, ponderomotive detuning of the scattered emission can lead to decreased source performance. Up to now, the calculations of spectra for such nonlinear Thomson scattering have been done assuming a perfectly aligned electron interacts with the incident laser beam and several authors have investigated whether pondermotive detuning may be mitigated or cured by suitable incident laser chirping prescriptions. In order to determine if these chirping prescriptions are suitable in real beams with nonzero emittance, it is necessary to include misaligned boundary conditions in the electron motion and calculate the resulting spectra from the exact motion. In this paper we provide the exact solution for the electron equations of motion in the case of a misaligned electron passing through a laser pulse of high field strength. This solution is then used to calculate the scattered radiation distribution and we determine the emittance limits for the simplest chirping prescription
Scattered Spectra from Inverse Compton Sources Operating at High Laser Fields and High Electron Energies
As Compton x-ray and gamma-ray sources become more prevalent, to understand their performance in a precise way, it becomes important to be able to compute the distribution of scattered photons precisely. For example, codes have been developed at Old Dominion University which were used to understand the performance of the Dresden Compton Source in detail. An ideal model would (i) include the full Compton effect frequency relations between incident and scattered photons, (ii) allow the field strength to be large enough that nonlinear effects are captured, and (iii) allow the effects of electron beam emittance to be introduced and studied. Various authors have considered various pieces of this problem, but until now, no analytical or numerical procedure is known to us that captures these three effects simultaneously. Here we present a model for spectrum calculations which simultaneously cover these aspects. The model is compared to a published full quantum mechanical calculation and found to agree for a case where both full Compton effect and nonlinear field strength are present. We use this model to investigate chirping prescriptions to mitigate ponderomotive broadening
Laser Chirping in Inverse Compton Sources at High Electron Beam Energies and High Laser Intensities
The onset of nonlinear effects, such as ponderomotive broadening, increases the radiation bandwidth and thereby places a stringent limitation on the laser intensity used in inverse Compton sources. Recently, we have shown that a judicious longitudinal laser frequency modulation ( chirping ) can perfectly compensate for this ponderomotive broadening and restore the narrow band property of scattered radiation in the Thomson regime, when electron recoil during the collision with the laser can be neglected. Consequently, using QED, the laser chirping has been extended to the Compton regime, where electron recoil is properly accounted for. Here we present a new, semiclassical model for computation of scattered spectra in the Compton regime. We also derive a comprehensive generalization of the expressions for chirping prescription for linearly polarized laser pulses in 1D plane-wave approximation with arbitrary shapes and arbitrary scattering angle in the Compton regime. We use these new expressions to show that the higher-order harmonics in sources with high laser fields and high electron beam energies (nonlinear Compton regime) will be nonlinearly redshifted when compared to those with lower beam energies (Thomson regime). The chirping prescription will act to correct ponderomotive broadening in very high harmonics
Decay of metastable phases in a model for the catalytic oxidation of CO
We study by kinetic Monte Carlo simulations the dynamic behavior of a
Ziff-Gulari-Barshad model with CO desorption for the reaction CO + O
CO on a catalytic surface. Finite-size scaling analysis of the fluctuations
and the fourth-order order-parameter cumulant show that below a critical CO
desorption rate, the model exhibits a nonequilibrium first-order phase
transition between low and high CO coverage phases. We calculate several points
on the coexistence curve. We also measure the metastable lifetimes associated
with the transition from the low CO coverage phase to the high CO coverage
phase, and {\it vice versa}. Our results indicate that the transition process
follows a mechanism very similar to the decay of metastable phases associated
with {\it equilibrium} first-order phase transitions and can be described by
the classic Kolmogorov-Johnson-Mehl-Avrami theory of phase transformation by
nucleation and growth. In the present case, the desorption parameter plays the
role of temperature, and the distance to the coexistence curve plays the role
of an external field or supersaturation. We identify two distinct regimes,
depending on whether the system is far from or close to the coexistence curve,
in which the statistical properties and the system-size dependence of the
lifetimes are different, corresponding to multidroplet or single-droplet decay,
respectively. The crossover between the two regimes approaches the coexistence
curve logarithmically with system size, analogous to the behavior of the
crossover between multidroplet and single-droplet metastable decay near an
equilibrium first-order phase transition.Comment: 27 pages, 22 figures, accepted by Physical Review
- …