43 research outputs found
Physics Based Design, the Future of Modeling and Simulation
This paper discusses the expanding role of modeling and simulation in the design and development of electrical power systems. The concepts of physics-based design and building blocks are introduced to show how complex systems may be simplified. However, the detail and complexity of tomorrow’s systems are beyond today’s tools. Computing power has increased to the point where physics-based design is possible. The aim of this paper is to discus the issues and opportunities for modeling and simulation in advanced system design.
Mathematical and computer modeling of electro-optic systems using a generic modeling approach
The conventional approach to modelling electro-optic sensor systems is to develop separate models for individual systems or classes of system, depending on the detector technology employed in the sensor and the application. However, this ignores commonality in design and in components of these systems. A generic approach is presented for modelling a variety of sensor systems operating in the infrared waveband that also allows systems to be modelled with different levels of detail and at different stages of the product lifecycle. The provision of different model types (parametric and image-flow descriptions) within the generic framework can allow valuable insights to be gained
Identifying a minor histocompatibility antigen in mauritian cynomolgus macaques encoded by APOBEC3C
Allogeneic hematopoietic stem cell transplants can lead to dramatic reductions in human immunodeficiency virus (HIV) reservoirs. This effect is partially mediated by donor T cells recognizing lymphocyte-expressed minor histocompatibility antigens (mHAgs). The potential to mark malignant and latently infected cells for destruction makes mHAgs attractive targets for cellular immunotherapies. However, testing such HIV reservoir reduction strategies will likely require preclinical studies in non-human primates (NHPs). In this study, we used a combination of alloimmunization, whole exome sequencing, and bioinformatics to identify an mHAg in Mauritian cynomolgus macaques (MCMs). We mapped the minimal optimal epitope to a 10-mer peptide (SW10) in apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3C (APOBEC3C) and determined the major histocompatibility complex class I restriction element as Mafa-A1∗063, which is expressed in almost 90% of MCMs. APOBEC3C SW10-specific CD8+ T cells recognized immortalized B cells but not fibroblasts from an mHAg-positive MCM. These results provide a framework for identifying mHAgs in a non-transplant setting and suggest that APOBEC3C SW10 could be used as a model antigen to test mHAg-targeted therapies in NHPs
Specific CD8+ T cell responses correlate with control of simian immunodeficiency virus replication in Mauritian cynomolgus macaques
Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8+ T cells, but it is not clear whether particular CD8+ T cell responses or a broad repertoire of epitope-specific CD8+ T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239. As measured by a gamma interferon enzyme-linked immunosorbent spot assay (IFN-γ ELISPOT) using blood, T cell breadth did not differ significantly between homozygotes and heterozygotes. Surprisingly, macaques that controlled SIV replication, regardless of their MHC zygosity, shared durable T cell responses against similar regions of Nef. While the limited genetic variability in these animals prevents us from making generalizations about the importance of Nef-specific T cell responses in controlling HIV, these results suggest that the T cell-mediated control of virus replication that we observed is more likely the consequence of targeting specificity rather than T cell breadth
Physics Based Design, the Future of Modeling and Simulation
This paper discusses the expanding role of modeling and simulation in the design and development of electrical power systems. The concepts of physics-based design and building blocks are introduced to show how complex systems may be simplified. However, the detail and complexity of tomorrow’s systems are beyond today’s tools. Computing power has increased to the point where physics-based design is possible. The aim of this paper is to discus the issues and opportunities for modeling and simulation in advanced system design.
Characteristics and Applications of Silicon Carbide Power Devices in Power Electronics
Silicon carbide materials, with its high mechanical strength, high thermal conductivity, ability to operate at high temperatures, and extreme chemical inertness to most of the electrolytes, are very attractive for high-power applications. In this paper, properties, advantages, and limitations of SiC and conventional Si materials are compared. Various applications, where SiC power devices are attractive, are discussed