47 research outputs found

    Quartic Chameleons: Safely Scale-Free in the Early Universe

    Get PDF
    In chameleon gravity, there exists a light scalar field that couples to the trace of the stress-energy tensor in such a way that its mass depends on the ambient matter density, and the field is screened in local, high-density environments. Recently it was shown that, for the runaway potentials commonly considered in chameleon theories, the field's coupling to matter and the hierarchy of scales between Standard Model particles and the energy scale of such potentials result in catastrophic effects in the early Universe when these particles become nonrelativistic. Perturbations with trans-Planckian energies are excited, and the theory suffers a breakdown in calculability at the relatively low temperatures of Big Bang Nucleosynthesis. We consider a chameleon field in a quartic potential and show that the scale-free nature of this potential allows the chameleon to avoid many of the problems encountered by runaway potentials. Following inflation, the chameleon field oscillates around the minimum of its effective potential, and rapid changes in its effective mass excite perturbations via quantum particle production. The quartic model, however, only generates high-energy perturbations at comparably high temperatures and is able remain a well-behaved effective field theory at nucleosynthesis.Comment: 13 pages, 5 figures. Updated to match published versio

    Comment on "Kinetic decoupling of WIMPs: Analytic expressions"

    Get PDF
    Visinelli and Gondolo (2015, hereafter VG15) derived analytic expressions for the evolution of the dark matter temperature in a generic cosmological model. They then calculated the dark matter kinetic decoupling temperature TkdT_{\mathrm{kd}} and compared their results to the Gelmini and Gondolo (2008, hereafter GG08) calculation of TkdT_{\mathrm{kd}} in an early matter-dominated era (EMDE), which occurs when the Universe is dominated by either a decaying oscillating scalar field or a semistable massive particle before Big Bang nucleosynthesis. VG15 found that dark matter decouples at a lower temperature in an EMDE than it would in a radiation-dominated era, while GG08 found that dark matter decouples at a higher temperature in an EMDE than it would in a radiation-dominated era. VG15 attributed this discrepancy to the presence of a matching constant that ensures that the dark matter temperature is continuous during the transition from the EMDE to the subsequent radiation-dominated era and concluded that the GG08 result is incorrect. We show that the disparity is due to the fact that VG15 compared TkdT_\mathrm{kd} in an EMDE to the decoupling temperature in a radiation-dominated universe that would result in the same dark matter temperature at late times. Since decoupling during an EMDE leaves the dark matter colder than it would be if it decoupled during radiation domination, this temperature is much higher than TkdT_\mathrm{kd} in a standard thermal history, which is indeed lower than TkdT_{\mathrm{kd}} in an EMDE, as stated by GG08.Comment: 4 pages, 1 figure; comment on arXiv: 1501.0223

    Large-scale anomalies in the cosmic microwave background as signatures of non-Gaussianity

    Get PDF
    We derive a general expression for the probability of observing deviations from statistical isotropy in the cosmic microwave background (CMB) if the primordial fluctuations are non-Gaussian and extend to superhorizon scales. The primary motivation is to properly characterize the monopole and dipole modulations of the primordial power spectrum that are generated by the coupling between superhorizon and subhorizon perturbations. Unlike previous proposals for generating the hemispherical power asymmetry, we do not assume that the power asymmetry results from a single large superhorizon mode. Instead, we extrapolate the observed power spectrum to superhorizon scales and compute the power asymmetry that would result from a specific realization of non-Gaussian perturbations on scales larger than the observable universe. Our study encompasses many of the scenarios that have been put forward as possible explanations for the CMB hemispherical power asymmetry. We confirm our analytic predictions for the probability of a given power asymmetry by comparing them to numerical realizations of CMB maps. We find that non-local models of non-Gaussianity and scale-dependent local non-Gaussianity produce scale-dependent modulations of the power spectrum, thereby potentially producing both a monopolar and a dipolar power modulation on large scales. We then provide simple examples of finding the posterior distributions for the parameters of the bispectrum from the observed monopole and dipole modulations.Comment: 21 pages, 11 figures; v2: minor changes to match the PRD accepted versio

    Bringing Isolated Dark Matter Out of Isolation: Late-time Reheating and Indirect Detection

    Get PDF
    In standard cosmology, the growth of structure becomes significant following matter-radiation equality. In non-thermal histories, where an effectively matter-dominated phase occurs due to scalar oscillations prior to Big Bang Nucleosynthesis, a new scale at smaller wavelengths appears in the matter power spectrum. Density perturbations that enter the horizon during the matter-dominated phase grow linearly with the scale factor prior to the onset of radiation domination, which leads to enhanced inhomogeneity on small scales if dark matter thermally and kinetically decouples during the matter-dominated phase. The microhalos that form from these enhanced perturbations significantly boost the self-annihilation rate for dark matter. This has important implications for indirect detection experiments: the larger annihilation rate will result in observable signals from dark matter candidates that are usually deemed untestable. As a proof of principle, we consider Binos in heavy supersymmetry with an intermediate extended Higgs sector and all other superpartners decoupled. We find that these isolated Binos, which lie under the neutrino floor, can account for the dark matter relic density while also leading to observable predictions for Fermi-LAT. Current limits on the annihilation cross section from Fermi-LAT's observations of dwarf spheroidal galaxies may already constrain Bino dark matter up to masses O(300)\mathcal{O}(300) GeV, depending on the internal structure of the microhalos. More extensive constraints are possible with improved gamma-ray bounds and boost calculations from NN-body simulations

    Rolling in the Modulated Reheating Scenario

    Get PDF
    In the modulated reheating scenario, the field that drives inflation has a spatially varying decay rate, and the resulting inhomogeneous reheating process generates adiabatic perturbations. We examine the statistical properties of the density perturbations generated in this scenario. Unlike earlier analyses, we include the dynamics of the field that determines the inflaton decay rate. We show that the dynamics of this modulus field can significantly alter the amplitude of the power spectrum and the bispectrum, even if the modulus field has a simple potential and its effective mass is smaller than the Hubble rate. In some cases, the evolution of the modulus amplifies the non-Gaussianity of the perturbations to levels that are excluded by recent observations of the cosmic microwave background. Therefore, a proper treatment of the modulus dynamics is required to accurately calculate the statistical properties of the perturbations generated by modulated reheating.Comment: 27 pages, 11 figures: minor changes made to match version in JCA

    A new probe of the small-scale primordial power spectrum: astrometric microlensing by ultracompact minihalos

    Get PDF
    The dark matter enclosed in a density perturbation with a large initial amplitude (delta-rho/rho > 1e-3) collapses shortly after recombination and forms an ultracompact minihalo (UCMH). Their high central densities make UCMHs especially suitable for detection via astrometric microlensing: as the UCMH moves, it changes the apparent position of background stars. A UCMH with a mass larger than a few solar masses can produce a distinctive astrometric microlensing signal that is detectable by the space astrometry mission Gaia. If Gaia does not detect gravitational lensing by any UCMHs, then it establishes an upper limit on their abundance and constrains the amplitude of the primordial power spectrum for k~2700 Mpc^{-1}. These constraints complement the upper bound on the amplitude of the primordial power spectrum derived from limits on gamma-ray emission from UCMHs because the astrometric microlensing signal produced by an UCMH is maximized if the dark-matter annihilation rate is too low to affect the UCMH's density profile. If dark matter annihilation within UCMHs is not detectable, a search for UCMHs by Gaia could constrain the amplitude of the primordial power spectrum to be less than 1e-5; this bound is three orders of magnitude stronger than the bound derived from the absence of primordial black holes.Comment: 17 pages, 6 figures, references added and minor changes made to match version published in PR

    Supermassive Black Hole Merger Rates: Uncertainties from Halo Merger Theory

    Get PDF
    The merger of two supermassive black holes is expected to produce a gravitational-wave signal detectable by the satellite LISA. The rate of supermassive-black-hole mergers is intimately connected to the halo merger rate, and the extended Press-Schechter formalism is often employed when calculating the rate at which these events will be observed by LISA. This merger theory is flawed and provides two rates for the merging of the same pair of haloes. We show that the two predictions for the LISA supermassive-black-hole-merger event rate from extended Press-Schechter merger theory are nearly equal because mergers between haloes of similar masses dominate the event rate. An alternative merger rate may be obtained by inverting the Smoluchowski coagulation equation to find the merger rate that preserves the Press-Schechter halo abundance, but these rates are only available for power-law power spectra. We compare the LISA event rates derived from the extended Press-Schechter merger formalism to those derived from the merger rates obtained from the coagulation equation and find that the extended Press-Schechter LISA event rates are thirty percent higher for a power spectrum spectral index that approximates the full Lambda-CDM result of the extended Press-Schechter theory.Comment: 9 pages, 9 figures. More concise treatment, accepted for publication in MNRA

    New constraints on dark matter production during kination

    Get PDF
    Our ignorance of the period between the end of inflation and the beginning of Big Bang Nucleosynthesis limits our understanding of the origins and evolution of dark matter. One possibility is that the Universe's energy density was dominated by a fast-rolling scalar field while the radiation bath was hot enough to thermally produce dark matter. We investigate the evolution of the dark matter density and derive analytic expressions for the dark matter relic abundance generated during such a period of kination. Kination scenarios in which dark matter does not reach thermal equilibrium require σv<2.7×1038cm3s1\langle \sigma v \rangle < 2.7\times 10^{-38} \,\mathrm{cm^3\,s^{-1}} to generate the observed dark matter density while allowing the Universe to become radiation dominated by a temperature of 3MeV3 \, \mathrm{MeV}. Kination scenarios in which dark matter does reach thermal equilibrium require σv>3×1026cm3s1\langle \sigma v \rangle > 3\times 10^{-26} \,\mathrm{cm^3\,s^{-1}} in order to generate the observed dark matter abundance. We use observations of dwarf spheroidal galaxies by the Fermi Gamma-Ray Telescope and observations of the Galactic Center by the High Energy Stereoscopic System to constrain these kination scenarios. Combining the unitarity constraint on σv\langle \sigma v \rangle with these observational constraints sets a lower limit on the temperature at which the Universe can become radiation dominated following a period of kination if σv>3×1031cm3s1{\langle \sigma v \rangle > 3\times 10^{-31} \,\mathrm{cm^3\,s^{-1}}}. This lower limit is between 0.05GeV{0.05 \, \mathrm{GeV}} and 1GeV{1 \, \mathrm{GeV}}, depending on the dark matter annihilation channel.Comment: 12 pages, 7 figure

    Quartic chameleons: Safely scale-free in the early Universe

    Get PDF
    In chameleon gravity, there exists a light scalar field that couples to the trace of the stress-energy tensor in such a way that its mass depends on the ambient matter density, and the field is screened in local, high-density environments. Recently it was shown that, for the runaway potentials commonly considered in chameleon theories, the field's coupling to matter and the hierarchy of scales between Standard Model particles and the energy scale of such potentials result in catastrophic effects in the early Universe when these particles become nonrelativistic. Perturbations with trans-Planckian energies are excited, and the theory suffers a breakdown in calculability at the relatively low temperatures of Big Bang Nucleosynthesis. We consider a chameleon field in a quartic potential and show that the scale-free nature of this potential allows the chameleon to avoid many of the problems encountered by runaway potentials. Following inflation, the chameleon field oscillates around the minimum of its effective potential, and rapid changes in its effective mass excite perturbations via quantum particle production. The quartic model, however, only generates high-energy perturbations at comparably high temperatures and is able remain a well-behaved effective field theory at nucleosynthesis

    The dark matter annihilation boost from low-temperature reheating

    Get PDF
    The evolution of the Universe between inflation and the onset of big bang nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abundance without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations of dwarf spheroidal galaxies. Although these constraints are subject to uncertainties regarding the internal structure of the microhalos that form from the enhanced perturbations, they open up the possibility of using gamma-ray observations to learn about the reheating of the Universe
    corecore