1 research outputs found

    Highly Sensitive H2S Sensing with Gold and Platinum Surface-Modified ZnO Nanowire ChemFETs

    No full text
    In this work, we investigate the catalytic effects of gold (Au) and platinum (Pt) nanoparticle layer deposition on highly sensitive zinc oxide (ZnO) nanowires (NWs) used for selective H2S detection in the sub-ppm region. Optimum quality pristine ZnO NWs were grown by high temperature chemical vapor deposition (CVD) in the vapor liquid solid growth (VLS) mode on silicon with a thin Au layer acting as a growth catalyst. The surface of pristine ZnO NWs was modified by systematic magnetron sputtering of discontinuous Au and Pt layers of 0–5 nm thickness. Resistive gas sensors based on the gas sensing mechanism of a chemical field effect transistor (ChemFET) with open gate, which is formed by hundreds of parallel aligned pristine Au-modified or Pt-modified ZnO NWs, were measured toward H2S diluted in dry nitrogen (N2) or in dry synthetic air at room temperature. Gas sensing results showed a largely improved response due to the catalytic effects of metal deposition on the ZnO NW surface. Controlled application of ZnO NW growth under optimized conditions and metal catalyst deposition showed a clear response enhancement toward 1 ppm H2S from the initial 20% achieved with pristine ZnO to over 5000% with ZnO NWs covered by 5 nm of Au, and, hence, significantly lower than the limit of detection
    corecore