361 research outputs found
The Effects of Machine-Weight and Free-Weight Resistance Exercise on Hemodynamics and Vascular Function
International Journal of Exercise Science 13(2): 526-538, 2020. The purpose of this study was to examine hemodynamic and vascular responses between machine-weight and free-weight exercise. Resistance-trained individuals were assigned to a machine-weight (n= 13) or free-weight (n= 15) group. Groups completed two visits consisting of their assigned exercise condition and a control (CON). A 2 x 2 x 3 repeated measures ANOVA was used to test the effects of group across condition and time on the hemodynamic parameters [cardiac output (CO), heart rate (HR), total peripheral resistance (TPR), mean arterial pressure (MAP), and stroke volume (SV)]. A 2 x 2 x 2 repeated measures ANOVA was used to test the effects of group across condition and time on the hemodynamic variable, forearm vascular conductance (FVC), as well as on vascular measures [forearm blood flow (FBF), blood flow peak, and total reactive hyperemia (RH)]. Main effects were analyzed using pairwise comparisons. The results of the present study demonstrate that both machine-weight and free-weight exerciseproduce similar (p \u3e 0.05)alterations in hemodynamics and vascular function. Specifically, during recovery both groups demonstrated significant (p ≤ 0.05) increases in measures of hemodynamics such as CO, HR and FVC, as well as significant (p ≤ 0.05) decreases in TPR, MAP, and SV. Measures of vascular function such as FBF, blood flow peak, and total RH were also significantly (p ≤ 0.05) increased during recovery.Therefore, this study suggests that either machine weight or free-weight exercise may induce acute hemodynamic and vascular benefits, which may reduce the risk of cardiovascular disease (CVD) and CVD events
Hemodynamic response and pulse wave analysis after upper- and lower-body resistance exercise with and without blood flow restriction
Resistance exercise (RE) has been shown to elevate hemodynamics and pulse wave reflection. However, the effects of acute RE with blood flow restriction (BFR) on hemodynamics and pulse wave reflection are unclear. The purpose of this study was to evaluate the differences between upper- and lower-body RE with and without BFR on hemodynamics and pulse wave reflection. Twenty-three young resistance-trained individuals volunteered for the study. Hemodynamics and pulse wave reflection were assessed at rest, 10, 25, 40, and 55 minutes after either upper- or lower-body with or without BFR. The upper-body RE (URE) consisted of the latissimus dorsi pulldown and chest press; the lower-body RE (LRE) consisted of knee extension and knee flexion. The BFR condition consisted of four sets of 30, 15, 15, and 15 repetitions at 30% 1-repetition maximum (1RM) while the without BFR condition consisted of four sets of 8 repetitions at 70% 1RM. Heart rate, rate pressure product, and subendocardial viability ratio significantly (p\u3c0.05) increased after all exercises. Brachial and aortic systolic blood pressure (BP) significantly (p\u3c0.05) elevated after LRE while brachial and aortic diastolic BP significantly (p\u3c0.05) reduced after URE. Augmentation pressure, augmentation index (AIx), AIx normalized at 75 bpm, and wasted left ventricular pressure energy significantly (p\u3c0.05) increased after URE while transit time of reflected wave significantly (p\u3c0.05) decreased after LRE. URE places greater stress on pulse wave reflection while LRE results in greater responses in BP. Regardless of URE or LRE, the cardiovascular responses between BFR and without BFR are similar
The Effects of Machine-Weight and Free-Weight Resistance Exercise on Hemodynamics and Vascular Function
The purpose of this study was to examine hemodynamic and vascular responses between machine-weight and free-weight exercise. Resistance-trained individuals were assigned to a machine-weight (n = 13) or free-weight (n = 15) group. Groups completed two visits consisting of their assigned exercise condition and a control (CON). A 2 × 2 × 3 repeated measures ANOVA was used to test the effects of group across condition and time on the hemodynamic parameters [cardiac output (CO), heart rate (HR), total peripheral resistance (TPR), mean arterial pressure (MAP), and stroke volume (SV)]. A 2 × 2 × 2 repeated measures ANOVA was used to test the effects of group across condition and time on the hemodynamic variable, forearm vascular conductance (FVC), as well as on vascular measures [forearm blood flow (FBF), blood flow peak, and total reactive hyperemia (RH)]. Main effects were analyzed using pairwise comparisons. The results of the present study demonstrate that both machine-weight and free-weight exercise produce similar (p \u3e 0.05) alterations in hemodynamics and vascular function. Specifically, during recovery both groups demonstrated significant (p ≤ 0.05) increases in measures of hemodynamics such as CO, HR and FVC, as well as significant (p ≤ 0.05) decreases in TPR, MAP, and SV. Measures of vascular function such as FBF, blood flow peak, and total RH were also significantly (p ≤ 0.05) increased during recovery. Therefore, this study suggests that either machine weight or free-weight exercise may induce acute hemodynamic and vascular benefits, which may reduce the risk of cardiovascular disease (CVD) and CVD events
Historical records of the digger wasps, Astata Latreille 1796 (Hymenoptera: Crabronidae: Astatinae), from the United States and Canada in the Oregon State Arthropod Collection
A dataset of 345 observational records is presented for the genus Astata (Hymenoptera: Crabronidae: Astatinae) based on 329 museum specimens and 16 photo vouchers. Summary information for the Pacific Northwest records is provided, including the species present, seasonality and county records for Oregon
Changes in Endothelial Function after Acute Resistance Exercise Using Free Weights
We determined the effects of an acute bout of free-weight resistance exercise (ARE) on cardiovascular hemodynamics and endothelial function in resistance-trained individuals. Nineteen young, healthy, resistance-trained individuals performed two randomized sessions consisting of ARE or a quiet control (CON). The ARE consisted of three sets of 10 repetitions at 75% 1-repetition maximum for the squat, bench press, and deadlift. Cardiovascular hemodynamics was assessed using finger photoplethysmography. Forearm blood flow (FBF), and vasodilatory capacity markers, were assessed using venous occlusion plethysmography. Forearm vascular conductance was calculated by the division of mean FBF by mean arterial pressure. A two-way ANOVA was used to compare the effects of condition (ARE, CON) across time (rest, recovery). There were significant (p ≤ 0.05) decreases in mean arterial pressure and total peripheral resistance across conditions and time. There were significant condition-by-time interactions (p ≤ 0.05) for heart rate, stroke volume, and cardiac output after the ARE compared to the CON and rest. FBF was significantly (p = 0.001) increased during the recovery from ARE, as well as vasodilatory capacity markers such as peak blood flow (p = 0.05) and reactive hyperemia-induced blood flow (p = 0.0001). These data suggest that whole-body free-weight exercises acutely reduced blood pressure while simultaneously augmenting FBF, and vasodilatory capacity markers
Can viscous fiber lower glycemic markers in type 2 diabetes?
Review of: Jovanovski E, Khayyat R, Zurbau A, et al. Should viscous fiber supplements be considered in diabetes control? Results from a systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2019;42:755-766. Published correction appears in Diabetes Care. 2019;42:1604.Can viscous fiber lower glycemic markers in type 2 diabetes? The first meta-analysis to focus on viscous dietary fiber in T2D suggests a potential role for this supplement in improving glycemic control. PRACTICE CHANGER: Unless contraindicated, recommend viscous fiber supplementation to your patients with type 2 diabetes (T2D), in addition to the usual evidence-based standards of care, to improve markers of glycemic control. STRENGTH OF RECOMMENDATION: C: Based on a meta-analysis and systematic review of 28 randomized controlled trials, without discussion of patient-oriented outcomes.Erica S. Meisenheimer, MD, MA; Bob Marshall, MD, MPH, MISM, FAAFP, FAMIA; Samuel M. Tiglao, DO, FAAFP; Tyler S. Rogers, MD; David C. Bury, DO, FAAFP; Michael M. Dickman, DO, FAAFP; Robert C. Oh, MD, MPH, FAAFP (Family Medicine Residency, Madigan Army Medical Center, Joint Base Lewis- McChord, WA)Includes bibliographical reference
Vascular Responses to High-Intensity Battling Rope Exercise between the Sexes
The purpose of the study was to assess high-intensity battling rope exercise (HI-BRE) on hemodynamics, pulse wave reflection and arterial stiffness during recovery and between sexes. Twenty-three young, healthy resistance-trained individuals (men: n = 13; women: n = 10) were assessed for all measures at Rest, as well as 10-, 30-, and 60-minutes following HI-BRE. A one-way repeated measures ANOVA was used to analyze the effects of HI-BRE across time (Rest, 10, 30, and 60-minutes) on all dependent variables. Significant main effects were analyzed using paired t-tests with a Sidak correction factor. Significance was accepted a priori at p 0.05. There were significant reductions in hemodynamic measures of diastolic blood pressure (BP) in women, but not men following HI-BRE at 30 minutes. Further, measures of pulse wave reflection, specifically those of the augmentation index (AIx) and wasted left ventricular energy (ΔEw), were significantly increased in both men and women for 60 minutes, but changes were significantly attenuated in women suggesting less ventricular work. There were also significant increases in arterial stiffness in regard to the aorta and common carotid artery that were fully recovered by 30 and 60 minutes, respectively with no differences between men and women. Thus, the primary findings of this study suggest that measures of hemodynamics and pulse wave reflection are collectively altered for at least 60 minutes following HI-BRE, with women having attenuated responses compared to men
SUSTAIN drilling at Surtsey volcano, Iceland, tracks hydrothermal and microbiological interactions in basalt 50 years after eruption
The 2017 Surtsey Underwater volcanic System for Thermophiles, Alteration processes and INnovative concretes (SUSTAIN) drilling project at Surtsey volcano, sponsored in part by the International Continental Scientific Drilling Program (ICDP), provides precise observations of the hydrothermal, geochemical, geomagnetic, and microbiological changes that have occurred in basaltic tephra and minor intrusions since explosive and effusive eruptions produced the oceanic island in 1963–1967. Two vertically cored boreholes, to 152 and 192 m below the surface, were drilled using filtered, UV-sterilized seawater circulating fluid to minimize microbial contamination. These cores parallel a 181 m core drilled in 1979. Introductory investigations indicate changes in material properties and whole-rock compositions over the past 38 years. A Surtsey subsurface observatory installed to 181 m in one vertical borehole holds incubation experiments that monitor in situ mineralogical and microbial alteration processes at 25–124 ∘C. A third cored borehole, inclined 55∘ in a 264∘ azimuthal direction to 354 m measured depth, provides further insights into eruption processes, including the presence of a diatreme that extends at least 100 m into the seafloor beneath the Surtur crater. The SUSTAIN project provides the first time-lapse drilling record into a very young oceanic basaltic volcano over a range of temperatures, 25–141 ∘C from 1979 to 2017, and subaerial and submarine hydrothermal fluid compositions. Rigorous procedures undertaken during the drilling operation protected the sensitive environment of the Surtsey Natural Preserve
Safety, pharmacokinetics and pharmacodynamics of HTL0009936, a selective muscarinic M1 -acetylcholine receptor agonist: A randomized cross-over trial.
AIMS: HTL0009936 is a selective M1 muscarinic receptor agonist in development for cognitive dysfunction in Alzheimer's disease. Safety, tolerability and pharmacokinetics and exploratory pharmacodynamic effects of HTL0009936 administered by continuous IV infusion at steady state were investigated in elderly subjects with below average cognitive functioning (BACF). METHODS: Part A was a four-treatment open label sequential study in healthy elderly investigating 10-83 mg HTL0009936 (IV) and a 24 mg HTL0009936 single oral dose. Part B was a five-treatment randomized, double-blind, placebo and physostigmine controlled cross-over study with IV HTL0009936 in elderly subjects with BACF. Pharmacodynamic assessments were performed using neurocognitive and electrophysiological tests. RESULTS: Pharmacokinetics of HTL0009936 showed dose-proportional increases in exposure with a mean half-life of 2.4 hours. HTL0009936 was well-tolerated with transient dose-related adverse events (AEs). Small increases in mean systolic blood pressure of 7.12 mmHg (95% CI [3.99-10.24]) and in diastolic of 5.32 mmHg (95% CI [3.18-7.47]) were noted at the highest dose in part B. Overall, there was suggestive, but no definitive, positive or negative pharmacodynamic effects. Statistically significant effects were observed on P300 with HTL0009936 and adaptive tracking with physostigmine. CONCLUSIONS: HTL0009936 showed well-characterized pharmacokinetics and single doses were safe and generally well-tolerated in healthy elderly subjects. Due to physostigmine tolerability issues and subject burden, the study design was changed and some pharmacodynamic assessments (neurocognitive) were performed at suboptimal drug exposures. Therefore no clear conclusions can be made on pharmacodynamic effects of HTL0009936, although an effect on P300 is suggestive of central target engagement
- …