4 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Audiological and electrocochleography findings in hearing-impaired children with connexin 26 mutations and otoacoustic emissions.

    No full text
    We recorded cochlear potentials by transtympanic electrocochleography (ECochG) in three hearing-impaired children with GJB2 mutation who showed otoacoustic emissions. Pure tone thresholds, distortion product otoacoustic emissions (DPOAEs) and, auditory brainstem responses (ABRs) were also obtained. Subjects 1 (35delG/35delG) and 3 (M34T/wt) had profound hearing loss and showed the picture of auditory neuropathy (AN) as DPOAEs were detected with absent ABRs in both ears. The hearing impairment found in subject 2 (35delG/35delG) was profound in the right ear and moderate in the left ear. Both DPOAEs and ABRs with normal latencies and morphology were recorded only from the left ear. On the ECochG recording the cochlear microphonic was obtained from all children. No compound action potential (CAP) was detected in subject 1. A neural response was recorded only from the left ear in subject 2 with a threshold corresponding to the audiometric threshold while no CAP was detected on the right side. The ECochG obtained from subject 3 showed a low-amplitude broad negative deflection which was identifiable down to low stimulus levels. This response decreased in amplitude and duration when utilizing a high-rate stimulation paradigm. The amount of amplitude reduction was close to that calculated for normal ears, thus revealing the presence of an adapting neural component. These findings indicate that patients with GJB2 mutations and preserved outer hair cells function could present with the picture of AN. The hearing impairment is underlain by a selective inner hair cell loss or a lesion involving the synapses and/or the auditory nerve terminals. We suggest that neonatal hyperbilirubinemia may play a role in protecting outer hair cells against the damage induced by GJB2 mutations
    corecore