58 research outputs found

    Improved method for quantification of regional cardiac function in mice using phase-contrast MRI

    Get PDF
    Phase-contrast magnetic resonance imaging is a technique that allows for characterization of regional cardiac function and for measuring transmural myocardial velocities in human hearts with high temporal and spatial resolution. The application of this technique (also known as tissue phase mapping) to murine hearts has been very limited so far. The aim of our study was to implement and to optimize tissue phase mapping for a comprehensive assessment of murine transmural wall motion. Baseline values for regional motion patterns in mouse hearts, based on the clinically used American Heart Association's 17-segment model, were established, and a detailed motion analysis of mouse heart for the entire cardiac cycle (including epicardial and endocardial motion patterns) is provided. Black-blood contrast was found to be essential to obtain reproducible velocity encoding. Tissue phase mapping of the mouse heart permits the detailed assessment of regional myocardial velocities. While a proof-of-principle application in a murine ischemia–reperfusion model was performed, future studies are warranted to assess its potential for the investigation of systolic and diastolic functions in genetically and surgically manipulated mouse models of human heart disease. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc

    Adverse effect of increased left ventricular wall thickness on five year outcomes of patients with negative dobutamine stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine if patients without dobutamine induced left ventricular wall motion abnormalities (WMA) but an increased LV end-diastolic wall thickness (EDWT) exhibit a favorable cardiac prognosis.</p> <p>Results</p> <p>Between 1999 and 2001, 175 patients underwent a dobutamine stress cardiovascular magnetic resonance (DCMR) procedure utilizing gradient-echo cines. Participants had a LV ejection fraction >55% without evidence of an inducible WMA during peak dobutamine/atropine stress. After an average of 5.5 years, all participants were contacted and medical records were reviewed to determine the post-DCMR occurrence of cardiac death, myocardial infarction (MI), and unstable angina (USA) or congestive heart failure (CHF) warranting hospitalization.</p> <p>In a multivariate analysis, that took into account Framingham and other risk factors associated with cardiac events, a cine gradient-echo derived LV EDWT ≥12 mm was associated independently with an increase in cardiac death and MI (HR 6.0, p = 0.0016), and the combined end point of MI, cardiac death, and USA or CHF warranting hospitalization (HR 3.0, p = 0.0005).</p> <p>Conclusion</p> <p>Similar to echocardiography, CMR measures of increased LV wall thickness should be considered a risk factor for cardiac events in individuals receiving negative reports of inducible ischemia after dobutamine stress. Additional prognostic studies of the importance of LV wall thickness and mass measured with steady-state free precession techniques are warranted.</p

    The effects of an aerobic training intervention on cognition, grey matter volumes and white matter microstructure

    Get PDF
    While there is strong evidence from observational studies that physical activity is associated with reduced risk of cognitive decline and dementia, the extent to which aerobic training interventions impact on cognitive health and brain structure remains subject to debate. In a pilot study of 46 healthy older adults (66.6 years ± 5.2 years, 63% female), we compared the effects of a twelve-week aerobic training programme to a waitlist control condition on cardiorespiratory fitness, cognition and magnetic resonance imaging (MRI) outcomes. Cardiorespiratory fitness was assessed by VO2 max testing. Cognitive assessments spanned executive function, memory and processing speed. Structural MRI analysis included examination of hippocampal volume, and voxel-wise assessment of grey matter volumes using voxel-based morphometry. Diffusion tensor imaging analysis of fractional anisotropy, axial diffusivity and radial diffusivity was performed using tract-based spatial statistics. While the intervention successfully increased cardiorespiratory fitness, there was no evidence that the aerobic training programme led to changes in cognitive functioning or measures of brain structure in older adults. Interventions that are longer lasting, multi-factorial, or targeted at specific high-risk populations, may yield more encouraging results

    Cardiac q-space trajectory imaging by motion-compensated tensor-valued diffusion encoding in human heart in vivo

    Get PDF
    PURPOSE: Tensor-valued diffusion encoding can probe more specific features of tissue microstructure than what is available by conventional diffusion weighting. In this work, we investigate the technical feasibility of tensor-valued diffusion encoding at high b-values with q-space trajectory imaging (QTI) analysis, in the human heart in vivo. METHODS: Ten healthy volunteers were scanned on a 3T scanner. We designed time-optimal gradient waveforms for tensor-valued diffusion encoding (linear and planar) with second-order motion compensation. Data were analyzed with QTI. Normal values and repeatability were investigated for the mean diffusivity (MD), fractional anisotropy (FA), microscopic FA (μFA), isotropic, anisotropic and total mean kurtosis (MKi, MKa, and MKt), and orientation coherence (Cc ). A phantom, consisting of two fiber blocks at adjustable angles, was used to evaluate sensitivity of parameters to orientation dispersion and diffusion time. RESULTS: QTI data in the left ventricular myocardium were MD = 1.62 ± 0.07 μm2 /ms, FA = 0.31 ± 0.03, μFA = 0.43 ± 0.07, MKa = 0.20 ± 0.07, MKi = 0.13 ± 0.03, MKt = 0.33 ± 0.09, and Cc  = 0.56 ± 0.22 (mean ± SD across subjects). Phantom experiments showed that FA depends on orientation dispersion, whereas μFA was insensitive to this effect. CONCLUSION: We demonstrated the first tensor-valued diffusion encoding and QTI analysis in the heart in vivo, along with first measurements of myocardial μFA, MKi, MKa, and Cc . The methodology is technically feasible and provides promising novel biomarkers for myocardial tissue characterization
    • …
    corecore