3,174 research outputs found
A Trapped Field of 17.6 T in Melt-Processed, Bulk Gd-Ba-Cu-O Reinforced with Shrink-Fit Steel
The ability of large grain, REBaCuO [(RE)BCO; RE =
rare earth] bulk superconductors to trap magnetic field is determined by their
critical current. With high trapped fields, however, bulk samples are subject
to a relatively large Lorentz force, and their performance is limited primarily
by their tensile strength. Consequently, sample reinforcement is the key to
performance improvement in these technologically important materials. In this
work, we report a trapped field of 17.6 T, the largest reported to date, in a
stack of two, silver-doped GdBCO superconducting bulk samples, each of diameter
25 mm, fabricated by top-seeded melt growth (TSMG) and reinforced with
shrink-fit stainless steel. This sample preparation technique has the advantage
of being relatively straightforward and inexpensive to implement and offers the
prospect of easy access to portable, high magnetic fields without any
requirement for a sustaining current source.Comment: Updated submission to reflect licence change to CC-BY. This is the
"author accepted manuscript" and is identical in content to the published
versio
Recommended from our members
Genetic variation in the SIM1 locus is associated with erectile dysfunction.
Erectile dysfunction affects millions of men worldwide. Twin studies support the role of genetic risk factors underlying erectile dysfunction, but no specific genetic variants have been identified. We conducted a large-scale genome-wide association study of erectile dysfunction in 36,649 men in the multiethnic Kaiser Permanente Northern California Genetic Epidemiology Research in Adult Health and Aging cohort. We also undertook replication analyses in 222,358 men from the UK Biobank. In the discovery cohort, we identified a single locus (rs17185536-T) on chromosome 6 near the single-minded family basic helix-loop-helix transcription factor 1 (SIM1) gene that was significantly associated with the risk of erectile dysfunction (odds ratio = 1.26, P = 3.4 × 10-25). The association replicated in the UK Biobank sample (odds ratio = 1.25, P = 6.8 × 10-14), and the effect is independent of known erectile dysfunction risk factors, including body mass index (BMI). The risk locus resides on the same topologically associating domain as SIM1 and interacts with the SIM1 promoter, and the rs17185536-T risk allele showed differential enhancer activity. SIM1 is part of the leptin-melanocortin system, which has an established role in body weight homeostasis and sexual function. Because the variants associated with erectile dysfunction are not associated with differences in BMI, our findings suggest a mechanism that is specific to sexual function
The Radial Orbit Instability in Collisionless N-Body Simulations
Using a suite of self-gravitating, collisionless N-body models, we
systematically explore a parameter space relevant to the onset and behavior of
the radial orbit instability (ROI), whose strength is measured by the systemic
axis ratios of the models. We show that a combination of two initial
conditions, namely the velocity anisotropy and the virial ratio, determines
whether a system will undergo ROI and exactly how triaxial the system will
become. A third initial condition, the radial shape of the density profile,
plays a smaller, but noticeable role. Regarding the dynamical development of
the ROI, the instability a) begins after systems collapse to their most compact
configuration and b) evolves fastest when a majority of the particles have
radially anisotropic orbits while there is a lack of centrally-concentrated
isotropic orbits. We argue that this is further evidence that self-reinforcing
torques are the key to the onset of the ROI. Our findings support the idea that
a separate orbit instability plays a role in halting the ROI.Comment: accepted for publication in ApJ. 9 figures in emulateapj styl
Hnrnph1 Is A Quantitative Trait Gene for Methamphetamine Sensitivity.
Psychostimulant addiction is a heritable substance use disorder; however its genetic basis is almost entirely unknown. Quantitative trait locus (QTL) mapping in mice offers a complementary approach to human genome-wide association studies and can facilitate environment control, statistical power, novel gene discovery, and neurobiological mechanisms. We used interval-specific congenic mouse lines carrying various segments of chromosome 11 from the DBA/2J strain on an isogenic C57BL/6J background to positionally clone a 206 kb QTL (50,185,512-50,391,845 bp) that was causally associated with a reduction in the locomotor stimulant response to methamphetamine (2 mg/kg, i.p.; DBA/2J < C57BL/6J)-a non-contingent, drug-induced behavior that is associated with stimulation of the dopaminergic reward circuitry. This chromosomal region contained only two protein coding genes-heterogeneous nuclear ribonucleoprotein, H1 (Hnrnph1) and RUN and FYVE domain-containing 1 (Rufy1). Transcriptome analysis via mRNA sequencing in the striatum implicated a neurobiological mechanism involving a reduction in mesolimbic innervation and striatal neurotransmission. For instance, Nr4a2 (nuclear receptor subfamily 4, group A, member 2), a transcription factor crucial for midbrain dopaminergic neuron development, exhibited a 2.1-fold decrease in expression (DBA/2J < C57BL/6J; p 4.2 x 10-15). Transcription activator-like effector nucleases (TALENs)-mediated introduction of frameshift deletions in the first coding exon of Hnrnph1, but not Rufy1, recapitulated the reduced methamphetamine behavioral response, thus identifying Hnrnph1 as a quantitative trait gene for methamphetamine sensitivity. These results define a novel contribution of Hnrnph1 to neurobehavioral dysfunction associated with dopaminergic neurotransmission. These findings could have implications for understanding the genetic basis of methamphetamine addiction in humans and the development of novel therapeutics for prevention and treatment of substance abuse and possibly other psychiatric disorders
Universal Power Law in the Noise from a Crumpled Elastic Sheet
Using high-resolution digital recordings, we study the crackling sound
emitted from crumpled sheets of mylar as they are strained. These sheets
possess many of the qualitative features of traditional disordered systems
including frustration and discrete memory. The sound can be resolved into
discrete clicks, emitted during rapid changes in the rough conformation of the
sheet. Observed click energies range over six orders of magnitude. The measured
energy autocorrelation function for the sound is consistent with a stretched
exponential C(t) ~ exp(-(t/T)^{b}) with b = .35. The probability distribution
of click energies has a power law regime p(E) ~ E^{-a} where a = 1. We find the
same power law for a variety of sheet sizes and materials, suggesting that this
p(E) is universal.Comment: 5 pages (revtex), 10 uuencoded postscript figures appended, html
version at http://rainbow.uchicago.edu/~krame
Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta
A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres
Use of Genetic Stock Identification Data for Comparison of the Ocean Spatial Distribution, Size at Age, and Fishery Exposure of an Untagged Stock and Its Indicator: California Coastal versus Klamath River Chinook Salmon
Managing weak stocks in mixed-stock fisheries often relies on proxies derived from data-rich indicator stocks. For example, full cohort reconstruction of tagged Klamath River fall run Chinook salmon (Oncorhynchus tshawytscha) of northern California, USA, enables the use of detailed models to inform management. Information gained from this stock is also used in the management of the untagged, threatened California Coastal Chinook (CCC) salmon stock, by capping Klamath harvest rates. To evaluate use of this proxy, we used genetic stock identification (GSI) data to compare the two stocks\u27 size-at-age and ocean distribution, two key factors influencing fishery exposure. We developed methods to account for both sampling and genetic assignment uncertainty in catch estimates. We found that, in 2010, the stocks were similar in size-at-age early in the year (age-3 and age-4), but CCC fish were larger later in the year. The stocks appeared similarly distributed early in the year (2010), but more concentrated near their respective source rivers later in the year (2010 and 2011). If these results are representative, relative fishery impacts on the two stocks might scale similarly early in the year but management changes later in the year might have differing impacts on the two stocks
Status of Muon Collider Research and Development and Future Plans
The status of the research on muon colliders is discussed and plans are
outlined for future theoretical and experimental studies. Besides continued
work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy
collider, many studies are now concentrating on a machine near 0.1 TeV (CoM)
that could be a factory for the s-channel production of Higgs particles. We
discuss the research on the various components in such muon colliders, starting
from the proton accelerator needed to generate pions from a heavy-Z target and
proceeding through the phase rotation and decay ()
channel, muon cooling, acceleration, storage in a collider ring and the
collider detector. We also present theoretical and experimental R & D plans for
the next several years that should lead to a better understanding of the design
and feasibility issues for all of the components. This report is an update of
the progress on the R & D since the Feasibility Study of Muon Colliders
presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A.
Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics
(Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics,
Accelerators and Beam
- …