204 research outputs found

    AXIN1 and AXIN2 variants in gastrointestinal cancers

    Get PDF
    AbstractMutations in the APC (adenomatous polyposis coli) gene, which encodes a multi-functional protein with a well-defined role in the canonical Wnt pathway, underlie familial adenomatous polypsosis, a rare, inherited form of colorectal cancer (CRC) and contribute to the majority of sporadic CRCs. However, not all sporadic and familial CRCs can be explained by mutations in APC or other genes with well-established roles in CRC. The AXIN1 and AXIN2 proteins function in the canonical Wnt pathway, and AXIN1/2 alterations have been proposed as key defects in some cancers. Here, we review AXIN1 and AXIN2 sequence alterations reported in gastrointestinal cancers, with the goal of vetting the evidence that some of the variants may have key functional roles in cancer development

    Cancer - Cell survival guide

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62618/1/431035a.pd

    In Vivo Fluorescence-Based Endoscopic Detection of Colon Dysplasia in the Mouse Using a Novel Peptide Probe

    Get PDF
    Colorectal cancer (CRC) is a major cause of cancer-related deaths in much of the world. Most CRCs arise from pre-malignant (dysplastic) lesions, such as adenomatous polyps, and current endoscopic screening approaches with white light do not detect all dysplastic lesions. Thus, new strategies to identify such lesions, including non-polypoid lesions, are needed. We aim to identify and validate novel peptides that specifically target dysplastic colonic epithelium in vivo. We used phage display to identify a novel peptide that binds to dysplastic colonic mucosa in vivo in a genetically engineered mouse model of colo-rectal tumorigenesis, based on somatic Apc (adenomatous polyposis coli) gene inactivation. Binding was confirmed using confocal microscopy on biopsied adenomas and excised adenomas incubated with peptide ex vivo. Studies of mice where a mutant Kras allele was somatically activated in the colon to generate hyperplastic epithelium were also performed for comparison. Several rounds of in vivo T7 library biopanning isolated a peptide, QPIHPNNM. The fluorescent-labeled peptide bound to dysplastic lesions on endoscopic analysis. Quantitative assessment revealed the fluorescent-labeled peptide (target/background: 2.17±0.61) binds ∼2-fold greater to the colonic adenomas when compared to the control peptide (target/background: 1.14±0.15), p<0.01. The peptide did not bind to the non-dysplastic (hyperplastic) epithelium of the Kras mice. This work is first to image fluorescence-labeled peptide binding in vivo that is specific towards colonic dysplasia on wide-area surveillance. This finding highlights an innovative strategy for targeted detection to localize pre-malignant lesions that can be generalized to the epithelium of hollow organs

    ZBP-89 function in colonic stem cells and during butyrate-induced senescence

    Get PDF
    ZBP-89 (Zfp148, ZNF148) is a Kruppel-type zinc-finger family transcription factor that binds to GC-rich DNA elements. Earlier studies in cell lines demonstrated that ZBP- 89 cooperates with Wnt β-catenin signaling by inducing β-catenin gene expression. Since β-catenin levels are normally highest at the crypt base, we examined whether ZBP-89 is required for stem cell maintenance. Lineage-tracing using a Zfp148Cre transgenic line demonstrated expression in both intestine and colonic stem cells. Deleting the Zfp148 locus in the colon using the Cdx2NLSCre transgene, reduced the size and number of polyps formed in the Apc-deleted mice. Since colon polyps form in the presence of butyrate, a short chain fatty acid that suppresses cell growth, we examined the direct effect of butyrate on colon organoid survival. Butyrate induced senescence of colon organoids carrying the Apc deletion, only when Zfp148 was deleted. Using quantitative PCR and chromatin immunoprecipitation, we determined that butyrate treatment of colon cell lines suppressed ZNF148 gene expression, inducing CDKN2a (p16 ) gene expression. Collectively, Zfp148 mRNA is expressed in CBCs, and is required for stem cell maintenance and colonic transformation. Butyrate induces colonic cell senescence in part through suppression of ZBP-89 gene expression and its subsequent occupancy of the CDKN2A promoter. ERT2 ERT2 Ink4ahttp://deepblue.lib.umich.edu/bitstream/2027.42/168213/2/ZBP-89 function in colonic stem cells and during butyrate-induced senescence.pdfPublished versionDescription of ZBP-89 function in colonic stem cells and during butyrate-induced senescence.pdf : Published versio

    Lineage tracing suggests that ovarian endosalpingiosis does not result from escape of oviductal epithelium

    Full text link
    Most high‐grade serous carcinomas are thought to arise from Fallopian tube epithelium (FTE), but some likely arise outside of the tube, perhaps from ectopic tubal‐type epithelium known as endosalpingiosis. Importantly, the origin of endosalpingiosis is poorly understood. The proximity of the tubal fimbriae to the ovaries has led to the proposal that disruptions in the ovarian surface that occur during ovulation may allow detached FTE to implant in the ovary and form tubal‐type glands and cysts. An alternative model suggests that cells present in ectopic locations outside the Müllerian tract retain the capacity for multi‐lineage differentiation and can form glands with tubal‐type epithelium. We used double transgenic Ovgp1‐iCreERT2;R26RLSL‐eYFP mice, which express an eYFP reporter protein in OVGP1‐positive tissues following transient tamoxifen (TAM) treatment, to track the fate of oviductal epithelial cells. Cohorts of adult mice were given TAM to activate eYFP expression in oviductal epithelium, and ovaries were examined at time points ranging from 2 days to 12 months post‐TAM. To test whether superovulation might increase acquisition of endosalpingiosis, additional cohorts of TAM‐treated mice underwent up to five cycles of superovulation and ovaries were examined at 1, 6, and 12 months post‐TAM. Ovaries were sectioned in their entirety to identify endosalpingiosis. Immunohistochemical staining for PAX8, tubulin, OVGP1, and eYFP was employed to study endosalpingiosis lesions. Ovarian endosalpingiosis was identified in 14.2% of TAM‐treated adult mice. The endosalpingiotic inclusion glands and cysts were lined by secretory and ciliated cells and expressed PAX8, tubulin, OVGP1, and eYFP. Neither age nor superovulation was associated with a significant increase in endosalpingiosis. Endosalpingiosis was also occasionally present in the ovaries of pre‐pubertal mice. The findings imply that ovarian endosalpingiosis in the mouse does not likely arise as a consequence of detachment and implantation of tubal epithelium and other mechanisms may be relevant. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151844/1/path5308.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151844/2/path5308-sup-0001-FigS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151844/3/path5308_am.pd

    Silencing the GUCA2A-GUCY2C tumor suppressor axis in CIN, serrated, and MSI colorectal neoplasia.

    Get PDF
    Colorectal cancers (CRCs) initiate through distinct mutations, including in APC pathway components leading to tubular adenomas (TAs); in BRAF, with epigenetic silencing of CDX2, leading to serrated adenomas (SAs); and in the DNA mismatch repair machinery driving microsatellite instability (MSI). Transformation through the APC pathway involves loss of the hormone GUCA2A that silences the tumor-suppressing receptor GUCY2C. Indeed, oral hormone replacement is an emerging strategy to reactivate GUCY2C and prevent CRC initiation and progression. Moreover, retained expression by tumors arising from TAs has established GUCY2C as a diagnostic and therapeutic target to prevent and treat metastatic CRC. Here, we defined the potential role of the GUCA2A-GUCY2C axis and its suitability as a target in tumors arising through the SA and MSI pathways. GUCA2A hormone expression was eliminated in TAs, SAs, and MSI tumors compared to their corresponding normal adjacent tissues. In contrast to the hormone, the tumor-suppressing receptor GUCY2C was retained in TA and MSI tumors. Surprisingly, GUCY2C expression was nearly eliminated in SAs, reflecting loss of the transcription factor CDX2. Changes in the GUCA2A-GUCY2C axis in human SAs and MSI tumors were precisely recapitulated in genetic mouse models. These data reveal the possibility of GUCA2A loss silencing GUCY2C in the pathophysiology of, and oral hormone replacement to restore GUCY2C signaling to prevent, MSI tumors. Also, they highlight the potential for targeting GUCY2C to prevent and treat metastases arising from TA and MSI tumors. In contrast, loss of GUCY2C excludes patients with SAs as candidates for GUCY2C-based prevention and therapy

    Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data

    Get PDF
    BACKGROUND: A critical step in processing oligonucleotide microarray data is combining the information in multiple probes to produce a single number that best captures the expression level of a RNA transcript. Several systematic studies comparing multiple methods for array processing have used tightly controlled calibration data sets as the basis for comparison. Here we compare performances for seven processing methods using two data sets originally collected for disease profiling studies. An emphasis is placed on understanding sensitivity for detecting differentially expressed genes in terms of two key statistical determinants: test statistic variability for non-differentially expressed genes, and test statistic size for truly differentially expressed genes. RESULTS: In the two data sets considered here, up to seven-fold variation across the processing methods was found in the number of genes detected at a given false discovery rate (FDR). The best performing methods called up to 90% of the same genes differentially expressed, had less variable test statistics under randomization, and had a greater number of large test statistics in the experimental data. Poor performance of one method was directly tied to a tendency to produce highly variable test statistic values under randomization. Based on an overall measure of performance, two of the seven methods (Dchip and a trimmed mean approach) are superior in the two data sets considered here. Two other methods (MAS5 and GCRMA-EB) are inferior, while results for the other three methods are mixed. CONCLUSIONS: Choice of processing method has a major impact on differential expression analysis of microarray data. Previously reported performance analyses using tightly controlled calibration data sets are not highly consistent with results reported here using data from human tissue samples. Performance of array processing methods in disease profiling and other realistic biological studies should be given greater consideration when comparing Affymetrix processing methods

    Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic cancer is characterized by nearly universal activating mutations in KRAS. Among other somatic mutations, TP53 is mutated in more than 75% of human pancreatic tumors. Genetically engineered mice have proven instrumental in studies of the contribution of individual genes to carcinogenesis. Oncogenic Kras mutations occur early during pancreatic carcinogenesis and are considered an initiating event. In contrast, mutations in p53 occur later during tumor progression. In our model, we recapitulated the order of mutations of the human disease, with p53 mutation following expression of oncogenic Kras. Further, using an inducible and reversible expression allele for mutant p53, we inactivated its expression at different stages of carcinogenesis. Notably, the function of mutant p53 changes at different stages of carcinogenesis. Our work establishes a requirement for mutant p53 for the formation and maintenance of pancreatic cancer precursor lesions. In tumors, mutant p53 becomes dispensable for growth. However, it maintains the altered metabolism that characterizes pancreatic cancer and mediates its malignant potential. Further, mutant p53 promotes epithelial-mesenchymal transition (EMT) and cancer cell invasion. This work generates new mouse models that mimic human pancreatic cancer and expands our understanding of the role of p53 mutation, common in the majority of human malignancies

    MicroRNA miR-34 Inhibits Human Pancreatic Cancer Tumor-Initiating Cells

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1371/journal.pone.0006816.Background MicroRNAs (miRNAs) have been implicated in cancer initiation and progression via their ability to affect expression of genes and proteins that regulate cell proliferation and/or cell death. Transcription of the three miRNA miR-34 family members was recently found to be directly regulated by p53. Among the target proteins regulated by miR-34 are Notch pathway proteins and Bcl-2, suggesting the possibility of a role for miR-34 in the maintenance and survival of cancer stem cells. Methodology/Principal Findings We examined the roles of miR-34 in p53-mutant human pancreatic cancer cell lines MiaPaCa2 and BxPC3, and the potential link to pancreatic cancer stem cells. Restoration of miR-34 expression in the pancreatic cancer cells by either transfection of miR-34 mimics or infection with lentiviral miR-34-MIF downregulated Bcl-2 and Notch1/2. miR-34 restoration significantly inhibited clonogenic cell growth and invasion, induced apoptosis and G1 and G2/M arrest in cell cycle, and sensitized the cells to chemotherapy and radiation. We identified that CD44+/CD133+ MiaPaCa2 cells are enriched with tumorsphere-forming and tumor-initiating cells or cancer stem/progenitor cells with high levels of Notch/Bcl-2 and loss of miR-34. More significantly, miR-34 restoration led to an 87% reduction of the tumor-initiating cell population, accompanied by significant inhibition of tumorsphere growth in vitro and tumor formation in vivo. Conclusions/Significance Our results demonstrate that miR-34 may restore, at least in part, the tumor suppressing function of the p53 in p53-deficient human pancreatic cancer cells. Our data support the view that miR-34 may be involved in pancreatic cancer stem cell self-renewal, potentially via the direct modulation of downstream targets Bcl-2 and Notch, implying that miR-34 may play an important role in pancreatic cancer stem cell self-renewal and/or cell fate determination. Restoration of miR-34 may hold significant promise as a novel molecular therapy for human pancreatic cancer with loss of p53–miR34, potentially via inhibiting pancreatic cancer stem cells

    Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs

    Get PDF
    Epithelial–mesenchymal transition (EMT) is required for mesodermal differentiation during development. The zinc-finger transcription factor, Snail1, can trigger EMT and is sufficient to transcriptionally reprogram epithelial cells toward a mesenchymal phenotype during neoplasia and fibrosis. Whether Snail1 also regulates the behavior of terminally differentiated mesenchymal cells remains unexplored. Using a Snai1 conditional knockout model, we now identify Snail1 as a regulator of normal mesenchymal cell function. Snail1 expression in normal fibroblasts can be induced by agonists known to promote proliferation and invasion in vivo. When challenged within a tissue-like, three-dimensional extracellular matrix, Snail1-deficient fibroblasts exhibit global alterations in gene expression, which include defects in membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invasive activity. Snail1-deficient fibroblasts explanted atop the live chick chorioallantoic membrane lack tissue-invasive potential and fail to induce angiogenesis. These findings establish key functions for the EMT regulator Snail1 after terminal differentiation of mesenchymal cells
    corecore