50 research outputs found
Nitrogen translocation by Highland cattle grazing in Alnus viridis-encroached pastures.
During the last decades, Alnus viridis has expanded over former montane pastures and meadows, due to land use and abandonment. This nitrogen-fixing woody species has triggered negative agro-environmental impacts, such as nitrogen (N) leaching, soil acidification and a reduced biodiversity. The aim of this study was to estimate the N translocation from A. viridis-encroached areas to adjacent open pastures by Highland cattle. In 2019 and 2020, Highland cattle herds equipped with GPS collars were placed in four A. viridis-encroached paddocks across Italy and Switzerland. The N content was measured in A. viridis leaves, herbaceous vegetation, and cattle dung pats, which were collected throughout the grazing season. Using GPS locations and collar activity sensors, livestock activity phases were discriminated. The N ingested by cattle was estimated through the N content of herbaceous vegetation and A. viridis leaves of vegetation patches visited by cattle during 24 h before dung sampling (N24H). The N content of herbaceous vegetation significantly increased with increasing A. viridis cover. The average N content in dung pats (31.2 ± 3.4 g.kg-1 DM) was higher than average values from literature on grazing cattle. Moreover, it was positively related to the N24H. Most of this N (29.5 ± 10.3 kg ha-1 yr-1) was translocated towards resting areas, which generally occurred on flat open pastures. Our results highlight the potential of Highland cattle to effectively translocate part of the ingested N from A. viridis-encroached towards targeted open areas, thus bringing new perspective for forage yield and quality improvement in the long-term.
SUPPLEMENTARY INFORMATION
The online version contains supplementary material available at 10.1007/s10705-023-10282-0
Expert statement on the ICU management of patients with thrombotic thrombocytopenic purpura
Thrombotic thrombocytopenic purpura (TTP) is fatal in 90% of patients if left untreated and must be diagnosed early to optimize patient outcomes. However, the very low incidence of TTP is an obstacle to the development of evidence-based clinical practice recommendations, and the very wide variability in survival rates across centers may be partly ascribable to differences in management strategies due to insufficient guidance. We therefore developed an expert statement to provide trustworthy guidance about the management of critically ill patients with TTP. As strong evidence was difficult to find in the literature, consensus building among experts could not be reported for most of the items. This expert statement is timely given the recent advances in the treatment of TTP, such as the use of rituximab and of the recently licensed drug caplacizumab, whose benefits will be maximized if the other components of the management strategy follow a standardized pattern. Finally, unanswered questions are identified as topics of future research on TTP
Spatial Distribution of Highland Cattle in Alnus viridis Encroached Subalpine Pastures
Green alder (Alnus viridis) is a shrub species that has expanded over former pastures in Central Europe due to land abandonment, leading to negative agri-environmental impacts, such as a reduction in forage yield and quality and an increase in nitrate leaching. Robust livestock breeds such as Highland cattle could be used to control A. viridis encroachment. The objectives of this study were to investigate the impact of A. viridis encroachment on plant community composition and diversity and to map the spatial distribution of Highland cattle in A. viridis-encroached pastures. During the summer of 2019, three different Highland cattle herds were placed along an A. viridis encroachment gradient. A total of 58 botanical surveys were carried out before grazing to assess plant community composition, pastoral value, and ecological indicator values. The spatial distribution of cattle was studied during the whole grazing period by monitoring six to eight cows equipped with GPS collars in each herd. Plant species associated with higher pastoral values of the vegetation were found in areas with lower A. viridis cover, while highly encroached areas were dominated by a few nitrophilus and shade-tolerant broad-leaved species and by ferns. Cattle spent more time in areas with higher pastoral value but did not avoid areas with high cover of A. viridis, on steep slopes or far from water. These results show that Highland cattle are able to tolerate harsh environmental conditions and that they can exploit A. viridis-encroached pastures. This suggests that they have a high potential to reduce A. viridis encroachment in the long-term
Impact of drought on the functioning of grassland systems
A rainfall manipulation experiment was conducted over a two-year period on two semi-natural grassland sites, in order to determine the effects of drought on both forage production (dry matter and nutritive value) and plant-soil relationships. Water stress simulations were performed with the aid of rainout shelters. Among the nutritional parameters, lignocellulose content (ADF) and water-soluble carbohydrates (WSC) showed the greatest variation in drought conditions. Variations in ADF content were strongly linked to the drought-induced yield losses (less fibre in the small plants). By contrast, crude protein (CP) content remained fairly constant under drought conditions due to antagonistic processes: the detrimental effects on nitrogen nutrition were offset by slower plant growth (i.e. higher plant N concentration due to reduced shoot biomass). The phosphorus cycle (P cycle) was adversely affected by the water restrictions, with quite different responses depending on soil P content. A late stress (i.e. one occurring after the grass growth peak) had more-pronounced effects than an early one (occurring during the peak). This experiment allows the effects of water shortage to be placed in a broader context by showing that the variations in yield and quality caused by drought are of same order of magnitude as the natural variations that can be observed between different years
Structure–function analysis of PorXFj, the PorX homolog from Flavobacterium johnsioniae, suggests a role of the CheY-like domain in type IX secretion motor activity
Abstract The type IX secretion system (T9SS) is a large multi-protein transenvelope complex distributed into the Bacteroidetes phylum and responsible for the secretion of proteins involved in pathogenesis, carbohydrate utilization or gliding motility. In Porphyromonas gingivalis, the two-component system PorY sensor and response regulator PorX participate to T9SS gene regulation. Here, we present the crystal structure of PorXFj, the Flavobacterium johnsoniae PorX homolog. As for PorX, the PorXFj structure is comprised of a CheY-like N-terminal domain and an alkaline phosphatase-like C-terminal domain separated by a three-helix bundle central domain. While not activated and monomeric in solution, PorXFj crystallized as a dimer identical to active PorX. The CheY-like domain of PorXFj is in an active-like conformation, and PorXFj possesses phosphodiesterase activity, in agreement with the observation that the active site of its phosphatase-like domain is highly conserved with PorX
Nutrient limitations induced by drought affect forage N and P differently in two permanent grasslands
Drought events can strongly affect ecosystem functioning by modifying relationship between plants, microbes and soil chemistry, with consequent impacts on nutrient cycling. However, the potential impacts of a soil moisture reduction on the nitrogen (N) and phosphorus (P) cycling in grasslands remain poorly understood, especially in regard to. forage production.To fill this knowledge gap, a drought experiment was carried out using rainout shelters in two permanent grasslands, characterized by similar vegetation communities but contrasted soil nutrient limitations. Drought treatments were applied during two months, either when plant growth was highest (Early-season drought) or after the peak of biomass production (Late-season drought). Dry matter production, forage N status (NNI) and P content as well as N and P contents in microbial biomass and soil were determined.Both early and late-season drought significantly reduced soil moisture during the vegetation growth period. Forage yield was also reduced by drought, but only when it occurred late in the season. Using a structural equation model, we showed that soil moisture reduction had a direct effect on forage N status, suggesting that water shortage induced lower transpiration and water fluxes. Soil moisture reduction also affected forage P by reducing the availability of soil P. However, other mechanisms played a larger role and were site-specific. At the more fertile site, reduction in soil moisture directly impaired forage P, suggesting that water stress mainly resulted in lower diffusion rates to roots, while at the less fertile site, an indirect reduction of forage P through a pathway implying microbes (decrease in microbial P) was detected.Our results suggest that the two grasslands suffered mainly from water shortage per se, but also from drought induced nutrient deficiency (mainly P), which amplified yield losses and further decreased forage quality. Overall, our findings emphasize the need for further research on the plant-soil-microbe system functioning, in order to secure a sustainable and resilient forage production in the context of climate change
Use of Molasses-Based Blocks to Modify Grazing Patterns and Increase Highland Cattle Impacts on Alnus viridis-Encroached Pastures
Alnus viridis is a pioneer species that has expanded in Central Europe in the last decades, causing a series of negative agro-environmental impacts. Robust livestock grazing could be used as a targeted tool to reduce its encroachment, but more information is needed to find the best approach to achieve this goal. In this study, we assessed the potential of molasses-based blocks (MB) to lure Highland cattle into A. viridis-encroached areas and monitored impacts on the vegetation after grazing. In 2019 and 2020, two Highland cattle herds equipped with GPS collars were placed in three paddocks in the Swiss and Italian Alps, differing in the degree of A. viridis encroachment. In 2020, MB were added to highly encroached areas within each paddock to attract the herds to feed on A. viridis. Botanical surveys were carried out before and after grazing, around MB and control areas. Highland cattle grazed significantly more around MB (up to 50 m from the MB) compared to the previous year (i.e., same area without MB) and compared to control areas. The increased targeted grazing around MB led to a significant decrease in herbaceous cover and an increase in bare soil compared to control areas. Livestock grazing and trampling significantly reduced the cover of ferns, tall herbs, medium and small herbs, and woody species around MB compared to control areas. A. viridis leaves and branches were significantly removed and damaged up to 10 m from the MB, due to the more intense livestock grazing. Such results highlight the potential of this management regime to effectively reduce A. viridis encroachment in montane grasslands
Additional file 1 of Clinical Warburg effect in lymphoma patients admitted to intensive care unit
Additional file 1: Figure S1. Blood glucose levels at admission according to the Clinical Warburg group. Figure S2. Death at 12 months mortality proportions distribution according to the Clinical Warburg group4. Figure S3. Bootstrap sensitivity analysis of the Hazard ratio estimation according to the Clinical Warburg status4. Figure S4. Distribution balance of propensity score5. Figure S5. Kaplan–Meier survival estimates according to the Warburg group after propensity weighting5. Table S1. Baseline characteristics and outcomes of patients excluded due to the absence of serum lactate measurement6. Table S2. Documented localization of the hemopathya7. Table S3. Covariates associated with death at 12 months by unadjusted Cox survival analysis8. Table S4. Covariates associated with death at 12 months by Cox survival analysis (Model 2)9. Table S5. Average Treatment effect on the Treated (ATO) and Odds Ratio (OR) after overlap propensity score 10
The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation.
International audienceINTRODUCTION: ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency has been reported in patients with sepsis but its clinical relevance and pathophysiology remain unclear. Our objectives were to assess the clinical significance, prognostic value and pathophysiology of ADAMTS13 deficiency in patients with septic shock with and without disseminated intravascular coagulation (DIC). METHODS: This was a prospective monocenter cohort study of patients with septic shock. Von Willebrand Factor, ADAMTS13-related parameters and plasma IL-6 concentration were measured at inclusion to the study. Patients were categorized into three groups according to the presence of ADAMT13 deficiency (<30%) or DIC. RESULTS: This study included 72 patients with a median age of 59 years (interquartile range (IQR) 50 to 71). Each of the included patients received vasopressors; 55 (76%) were under mechanical ventilation and 22 (33%) underwent renal replacement therapy. Overall, 19 patients (26%) had DIC, and 36 patients had ADMTS13 deficiency (50%). Patients with DIC, ADAMTS13 deficiency or both were more severe at ICU admission. Mortality was higher in septic shock patients from group one. By multivariate analysis, Simplified Acute Physiology Score 2 (SAPS2) score (odds ratio (OR) 1.11/point; 95% CI 1.01 to 1.24) and ADAMTS13 activity <30% (OR 11.86; 95% CI 1.36 to 103.52) were independently associated with hospital mortality. There was no correlation between ADAMTS13 activity and the International Society for Thrombosis and Haemostasis (ISTH) score (rs = -0.97, P = 0.41) suggesting that ADAMTS13 functional deficiency and DIC were independent parameters. IL-6 level was higher in patients with ADAMTS13 activity <30% [895 (IQR 330 to 1843) pg/mL versus 83 (IQR 43 to 118), P = 0.0003). CONCLUSIONS: Septic shock was associated with a functional deficiency of ADAMTS13, independently of DIC. ADAMTS13 functional deficiency is then a prognostic factor for mortality in septic shock patients, independently of DIC