60 research outputs found

    A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy

    Get PDF
    Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further therapy.A case-control design was used to test the association of gene expression with outcome. Systemic (SYS) progression cases were men post-prostatectomy who developed systemic progression within 5 years after PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-related genes were evaluated-including 570 genes implicated in prostate cancer progression. Genes from 8 previously reported marker panels were included. A systemic progression model containing 17 genes was developed. This model generated an AUC of 0.88 (95% CI: 0.84-0.92). Similar AUCs were generated using 3 previously reported panels. In secondary analyses, the model predicted the endpoints of prostate cancer death (in SYS cases) and systemic progression beyond 5 years (in PSA controls) with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005). Genes mapped to 8q24 were significantly enriched in the model.Specific gene expression patterns are significantly associated with systemic progression after PSA recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from additional therapy after PSA recurrence

    Altered Calcium and Vitamin D Homeostasis in First-Time Calcium Kidney Stone-Formers.

    No full text
    Elevated serum 1,25-dihydroxyvitamin D (1,25(OH)2D) concentrations have been reported among cohorts of recurrent calcium (Ca) kidney stone-formers and implicated in the pathogenesis of hypercalciuria. Variations in Ca and vitamin D metabolism, and excretion of urinary solutes among first-time male and female Ca stone-formers in the community, however, have not been defined.In a 4-year community-based study we measured serum Ca, phosphorus (P), 25-hydroxyvitamin D (25(OH)D), 1,25(OH)2D, 24,25-dihydroxyvitamin D (24,25(OH)2D), parathyroid hormone (PTH), and fibroblast growth factor-23 (FGF-23) concentrations in first-time Ca stone-formers and age- and gender frequency-matched controls.Serum Ca and 1,25(OH)2D were increased in Ca stone-formers compared to controls (P = 0.01 and P = 0.001). Stone-formers had a lower serum 24,25(OH)2D/25(OH)D ratio compared to controls (P = 0.008). Serum PTH and FGF-23 concentrations were similar in the groups. Urine Ca excretion was similar in the two groups (P = 0.82). In controls, positive associations between serum 25(OH)D and 24,25(OH)2D, FGF-23 and fractional phosphate excretion, and negative associations between serum Ca and PTH, and FGF-23 and 1,25(OH)2D were observed. In SF associations between FGF-23 and fractional phosphate excretion, and FGF-23 and 1,25(OH)2D, were not observed. 1,25(OH)2D concentrations associated more weakly with FGF-23 in SF compared with C (P <0.05).Quantitative differences in serum Ca and 1,25(OH)2D and reductions in 24-hydroxylation of vitamin D metabolites are present in first-time SF and might contribute to first-time stone risk

    Kidney Stones and the Risk for Chronic Kidney Disease

    No full text
    Background and objectives: Kidney stones lead to chronic kidney disease (CKD) in people with rare hereditary disorders (e.g., primary hyperoxaluria, cystinuria), but it is unknown whether kidney stones are an important risk factor for CKD in the general population

    Derivation of urine output thresholds that identify a very high risk of AKI in patients with septic shock.

    No full text
    BACKGROUND AND OBJECTIVES: To promote early detection of AKI, recently proposed pretest probability models combine sub–Kidney Disease Improving Global Outcomes (KDIGO) AKI criteria with baseline AKI risk. The primary objective of this study was to determine sub-KDIGO thresholds that identify patients with septic shock at highest risk for AKI. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This was a retrospective analysis of 390 adult patients admitted to the medical intensive care unit (ICU) of a tertiary, academic medical center with septic shock between January 2008 and December 2010. Hourly urine output was collected from the time of septic shock recognition (hour 0) to hour 96, urine catheter removal, or ICU discharge (whichever occurred first). All available serum creatinine (SCr) measurements were collected until hour 96. The AKI pretest probability model was assessed during the first 12 hours of resuscitation and included the initial episode of oliguria, increase from baseline to peak SCr level, and Acute Physiology and Chronic Health Evaluation (APACHE) III score in a multivariable receiver-operator characteristic (ROC) analysis. The primary outcome was the incidence of stage II or III (stage II+) AKI defined by KDIGO criteria. Secondary outcomes included the need for RRT and 28-day mortality. RESULTS: Ninety-eight (25%) patients developed stage II+ AKI after septic shock recognition. APACHE III score and increase in SCr level in the first 12 hours were not statistically associated with stage II+ AKI in multivariable ROC analysis. Consecutive oliguria for 3 hours had fair predictive ability for achieving stage II+ AKI criteria (area under ROC curve, 0.73; 95% confidence interval [95% CI], 0.68 to 0.78), and oliguria for 5 hours demonstrated optimal accuracy (82%; 95% CI, 79% to 86%). CONCLUSIONS: Three to 5 hours of consecutive oliguria in patients with septic shock may provide a valuable measure of AKI risk. Further validation to support this finding is needed

    BMI1, stem cell factor acting as novel serum-biomarker for Caucasian and African-American prostate cancer.

    Get PDF
    Lack of reliable predictive biomarkers is a stumbling block in the management of prostate cancer (CaP). Prostate-specific antigen (PSA) widely used in clinics has several caveats as a CaP biomarker. African-American CaP patients have poor prognosis than Caucasians, and notably the serum-PSA does not perform well in this group. Further, some men with low serum-PSA remain unnoticed for CaP until they develop disease. Thus, there is a need to identify a reliable diagnostic and predictive biomarker of CaP. Here, we show that BMI1 stem-cell protein is secretory and could be explored for biomarker use in CaP patients.Semi-quantitative analysis of BMI1 was performed in prostatic tissues of TRAMP (autochthonous transgenic mouse model), human CaP patients, and in cell-based models representing normal and different CaP phenotypes in African-American and Caucasian men, by employing immunohistochemistry, immunoblotting and Slot-blotting. Quantitative analysis of BMI1 and PSA were performed in blood and culture-media of siRNA-transfected and non-transfected cells by employing ELISA. BMI1 protein is (i) secreted by CaP cells, (ii) increased in the apical region of epithelial cells and stromal region in prostatic tumors, and (iii) detected in human blood. BMI1 is detectable in blood of CaP patients in an order of increasing tumor stage, exhibit a positive correlation with serum-PSA and importantly is detectable in patients which exhibit low serum-PSA. The clinical significance of BMI1 as a biomarker could be ascertained from observation that CaP cells secrete this protein in higher levels than cells representative of benign prostatic hyperplasia (BPH).BMI1 could be developed as a dual bio-marker (serum and biopsy) for the diagnosis and prognosis of CaP in Caucasian and African-American men. Though compelling these data warrant further investigation in a cohort of African-American patients
    • …
    corecore