6,495 research outputs found

    Quantum Dots in Strong Magnetic Fields: Stability Criteria for the Maximum Density Droplet

    Full text link
    In this article we discuss the ground state of a parabolically confined quantum dots in the limit of very strong magnetic fields where the electron system is completely spin-polarized and all electrons are in the lowest Landau level. Without electron-electron interactions the ground state is a single Slater determinant corresponding to a droplet centered on the minimum of the confinement potential and occupying the minimum area allowed by the Pauli exclusion principle. Electron-electron interactions favor droplets of larger area. We derive exact criteria for the stability of the maximum density droplet against edge excitations and against the introduction of holes in the interior of the droplet. The possibility of obtaining exact results in the strong magnetic field is related to important simplifications associated with broken time-reversal symmetry in a strong magnetic field.Comment: 17 pages, 5 figures (not included), RevTeX 3.0. (UCF-CM-93-002

    Thermodynamic and Tunneling Density of States of the Integer Quantum Hall Critical State

    Full text link
    We examine the long wave length limit of the self-consistent Hartree-Fock approximation irreducible static density-density response function by evaluating the charge induced by an external charge. Our results are consistent with the compressibility sum rule and inconsistent with earlier work that did not account for consistency between the exchange-local-field and the disorder potential. We conclude that the thermodynamic density of states is finite, in spite of the vanishing tunneling density of states at the critical energy of the integer quantum Hall transition.Comment: 5 pages, 4 figures, minor revisions, published versio
    • …
    corecore