6,495 research outputs found
Quantum Dots in Strong Magnetic Fields: Stability Criteria for the Maximum Density Droplet
In this article we discuss the ground state of a parabolically confined
quantum dots in the limit of very strong magnetic fields where the electron
system is completely spin-polarized and all electrons are in the lowest Landau
level. Without electron-electron interactions the ground state is a single
Slater determinant corresponding to a droplet centered on the minimum of the
confinement potential and occupying the minimum area allowed by the Pauli
exclusion principle. Electron-electron interactions favor droplets of larger
area. We derive exact criteria for the stability of the maximum density droplet
against edge excitations and against the introduction of holes in the interior
of the droplet. The possibility of obtaining exact results in the strong
magnetic field is related to important simplifications associated with broken
time-reversal symmetry in a strong magnetic field.Comment: 17 pages, 5 figures (not included), RevTeX 3.0. (UCF-CM-93-002
Thermodynamic and Tunneling Density of States of the Integer Quantum Hall Critical State
We examine the long wave length limit of the self-consistent Hartree-Fock
approximation irreducible static density-density response function by
evaluating the charge induced by an external charge. Our results are consistent
with the compressibility sum rule and inconsistent with earlier work that did
not account for consistency between the exchange-local-field and the disorder
potential. We conclude that the thermodynamic density of states is finite, in
spite of the vanishing tunneling density of states at the critical energy of
the integer quantum Hall transition.Comment: 5 pages, 4 figures, minor revisions, published versio
- …