26 research outputs found

    Predicting the effect of silicon electrode design parameters on thermal performance of a lithium-ion battery

    Get PDF
    The present study models the role of electrode structural characteristics on the thermal beha­viour of lithium-ion batteries. Preliminary modelling runs have employed a 1D lithium-ion battery, coupled to a two-dimensional axisymmetric model using silicon as the battery anode material. The two models are coupled by the heat generated and the average temperature. Our study is focused on the silicon anode particle sizes, and it is observed that silicon anodes with nano sized particles reduced the heating of the battery under charge/discharge cycles when compared to anodes with larger particles. These results are discussed in context of the relationship between particle size and thermal transport properties in the electrode

    GM-CSF Increases Mucosal and Systemic Immunogenicity of an H1N1 Influenza DNA Vaccine Administered into the Epidermis of Non-Human Primates

    Get PDF
    Background: The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a worldwide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99) HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun) was analyzed in rhesus macaques. Methodology/Principal Findings: Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particlemediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI) antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1-3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine. Conclusions/Significance: These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skindelivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract. © 2010 Loudon et al

    Integration and Scalability of ALD-Based Mixed Phase Nanometer-scale Barrier Layers for Extendable Metal Interconnects

    No full text
    The sub-22nm CMOS device regime represents the introduction of significant challenges to conventional copper-based interconnect fabrication. In particular, the scalability of PVD-based copper barrier and seed methodologies for future interconnects is not assured. Alternative material and processing strategies based on directly-platable barriers formed by atomic layer deposition-based processing techniques hold promise to enable continued performance extendibility of copper interconnects. This paper will discuss a number of approaches under consideration, and will describe the mechanisms that allow these approaches to achieve performance targets for sub-22nm interconnects

    Predicting Capacity Fade in Silicon Anode-Based Li-Ion Batteries

    No full text
    While silicon anodes hold promise for use in lithium-ion batteries owing to their very high theoretical storage capacity and relatively low discharge potential, they possess a major problem related to their large volume expansion that occurs with battery aging. The resulting stress and strain can lead to mechanical separation of the anode from the current collector and an unstable solid electrolyte interphase (SEI), resulting in capacity fade. Since capacity loss is in part dependent on the cell materials, two different electrodes, Lithium Nickel Oxide or LiNi0.8Co0.15Al0.05O2 (NCA) and LiNi1/3Mn1/3Co1/3O2 (NMC 111), were used in combination with silicon to study capacity fade effects using simulations in COMSOL version 5.5. The results of these studies provide insight into the effects of anode particle size and electrolyte volume fraction on the behavior of silicon anode-based batteries with different positive electrodes. It was observed that the performance of a porous matrix of solid active particles of silicon anode could be improved when the active particles were 150 nm or smaller. The range of optimized values of volume fraction of the electrolyte in the silicon anode were determined to be between 0.55 and 0.40. The silicon anode behaved differently in terms of cell time with NCA and NMC. However, NMC111 gave a high relative capacity in comparison to NCA and proved to be a better working electrode for the proposed silicon anode structure

    Hydrogen plasma-enhanced atomic layer deposition of copper thin films

    No full text
    corecore