25 research outputs found

    Pre-Exercise Hyperhydration-Induced Bodyweight Gain Does Not Alter Prolonged Treadmill Running Time-Trial Performance in Warm Ambient Conditions

    Get PDF
    This study compared the effect of pre-exercise hyperhydration (PEH) and pre-exercise euhydration (PEE) upon treadmill running time-trial (TT) performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%–30% RH) on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW) of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA). PEH increased BW by 1.00 ± 0.34 kg (<em>P</em> < 0.01) and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH) to 1.4% ± 0.4% (HYP) (<em>P</em> < 0.01) during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, <em>P</em> = 0.82). Heart rate (5 ± 1 beats/min) and rectal (0.3 ± 0.1 °C) and body (0.2 ± 0.1 °C) temperatures of PEE were higher than those of PEH (<em>P</em> < 0.05). There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80–90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise

    The influence of drinking fluid on endurance cycling performance: a meta-analysis

    Get PDF
    Background Fluid replacement during cycling exercise evolves on a spectrum from simply drinking to thirst to planned structured intake, with both being appropriate recommendations. However, with mixed findings suggesting fluid intake may or may not improve endurance cycling performance (ECP) in a diverse range of trained individuals, there is a clear need for summarised evidence regarding the effect of fluid consumption on ECP

    Effect of Thirst-Driven Fluid Intake on 1 H Cycling Time-Trial Performance in Trained Endurance Athletes

    No full text
    A meta-analysis demonstrated that programmed fluid intake (PFI) aimed at fully replacing sweat losses during a 1 h high-intensity cycling exercise impairs performance compared with no fluid intake (NFI). It was reported that thirst-driven fluid intake (TDFI) may optimize cycling performance, compared with when fluid is consumed more than thirst dictates. However, how TDFI, compared with PFI and NFI, impacts performance during a 1 h cycling time-trial performance remains unknown. The aim of this study was to compare the effect of NFI, TDFI and PFI on 1 h cycling time-trial performance. Using a randomized, crossover and counterbalanced protocol, 9 (7 males and 2 females) trained endurance athletes (30 ± 9 years; Peak V · O2∶ 59 ± 8 mL·kg−1·min−1) completed three 1 h cycling time-trials (30 °C, 50% RH) with either NFI, TDFI or PFI designed to maintain body mass (BM) at ~0.5% of pre-exercise BM. Body mass loss reached 2.9 ± 0.4, 2.2 ± 0.3 and 0.6 ± 0.2% with NFI, TDFI and PFI, respectively. Heart rate, rectal and mean skin temperatures and ratings of perceived exertion and of abdominal discomfort diverged marginally among trials. Mean distance completed (NFI: 35.6 ± 1.9 km; TDFI: 35.8 ± 2.0; PFI: 35.7 ± 2.0) and, hence, average power output maintained during the time-trials did not significantly differ among trials, and the impact of both PFI and TDFI vs. NFI was deemed trivial or unclear. These findings indicate that neither PFI nor TDFI are likely to offer any advantage over NFI during a 1 h cycling time-trial

    Effect of Glycerol-Induced Hyperhydration on a 5-kilometer Running Time-Trial Performance in the Heat in Recreationally Active Individuals

    No full text
    Maximal oxygen consumption (V˙O2max) is a major determinant of 5-km running time-trial (TT) performance. Glycerol-induced hyperhydration (GIH) could improve V˙O2max in recreationally active persons through an optimal increase in plasma volume. Moreover, ingestion of a large bolus of cold fluid before exercise could decrease thermal stress during exercise, potentially contributing to improved performance. We determined the effect of GIH on 5-km running TT performance in 10 recreationally active individuals (age: 24 ± 4 years; V˙O2max: 48 ± 3 mL/kg/min). Using a randomized and counterbalanced protocol, participants underwent two, 120-min hydration protocols where they ingested a 1) 30 mL/kg fat-free mass (FFM) of cold water (~4 °C) with an artificial sweetener + 1.4 g glycerol/kg FFM over the first 60 min (GIH) or 2) 7.5 mL/kg FFM of cold water with an artificial sweetener over the first 20 min (EUH). Following GIH and EUH, participants underwent a 5-km running TT at 30 °C and 50% relative humidity. After 120 min, GIH was associated with significantly greater fluid retention (846 ± 415 mL) and plasma volume changes (10.1 ± 8.4%) than EUH, but gastrointestinal (GI) temperature did not differ. During exercise, 5-km running TT performance (GIH: 22.95 ± 2.62; EUH: 22.52 ± 2.74 min), as well as heart rate, GI temperature and perceived exertion did not significantly differ between conditions. This study demonstrates that the additional body water and plasma volume gains provided by GIH do not improve 5-km running TT performance in the heat in recreationally active individuals

    Effect of pre-exercise caffeine intake on endurance performance and core temperature regulation during exercise in the heat : A systematic review with meta-analysis

    No full text
    Background Heat is associated with physiological strain and endurance performance (EP) impairments. Studies have investigated the impact of caffeine intake upon EP and core temperature (CT) in the heat, but results are conflicting. There is a need to systematically determine the impact of pre-exercise caffeine intake in the heat. Objective To use a meta-analytical approach to determine the effect of pre-exercise caffeine intake on EP and CT in the heat. Design Systematic review with meta-analysis. Data Sources Four databases and cross-referencing. Data Analysis Weighted mean effect summaries using robust variance random-effects models for EP and CT, as well as robust variance meta-regressions to explore confounders. Study Selection Placebo-controlled, randomized studies in adults (≥ 18 years old) with caffeine intake at least 30 min before endurance exercise ≥ 30 min, performed in ambient conditions ≥ 27 °C. Results Respectively six and 12 studies examined caffeine’s impact on EP and CT, representing 52 and 205 endurance-trained individuals. On average, 6 mg/kg body mass of caffeine were taken 1 h before exercises of ~ 70 min conducted at 34 °C and 47% relative humidity. Caffeine supplementation non-significantly improved EP by 2.1 ± 0.8% (95% CI − 0.7 to 4.8) and significantly increased the rate of change in CT by 0.10 ± 0.03 °C/h (95% CI 0.02 to 0.19), compared with the ingestion of a placebo. Conclusion Caffeine ingestion of 6 mg/kg body mass ~ 1 h before exercise in the heat may provide a worthwhile improvement in EP, is unlikely to be deleterious to EP, and trivially increases the rate of change in CT

    Programmed vs. Thirst-Driven Drinking during Prolonged Cycling in a Warm Environment

    No full text
    We compared the effect of programmed (PFI) and thirst-driven (TDFI) fluid intake on prolonged cycling performance and exercise associated muscle cramps (EAMC). Eight male endurance athletes (26 ± 6 years) completed two trials consisting of 5 h of cycling at 61% V˙O2peak followed by a 20 km time-trial (TT) in a randomized crossover sequence at 30 °C, 35% relative humidity. EAMC was assessed after the TT with maximal voluntary isometric contractions of the shortened right plantar flexors. Water intake was either programmed to limit body mass loss to 1% (PFI) or consumed based on perceived thirst (TDFI). Body mass loss reached 1.5 ± 1.0% for PFI and 2.5 ± 0.9% for TDFI (p = 0.10). Power output during the 20 km TT was higher (p < 0.05) for PFI (278 ± 41 W) than TDFI (263 ± 39 W), but the total performance time, including the breaks to urinate, was similar (p = 0.48) between conditions. The prevalence of EAMC of the plantar flexors was similar between the drinking conditions. Cyclists competing in the heat for over 5 h may benefit from PFI aiming to limit body mass loss to <2% when a high intensity effort is required in the later phase of the race and when time lost for urination is not a consideration

    Cognitive Performance Before and Following Habituation to Exercise-Induced Hypohydration of 2 and 4% Body Mass in Physically Active Individuals

    No full text
    We investigated the effect of repeated exposures to hypohydration upon cognitive performance. In a randomized crossover design, ten physically active adults completed two 4-week training blocks, one where they maintained euhydration (EUH) and the other where they were water-restricted (DEH) during walking/running at 55% V.O2max, 40 °C. Three sessions per week were performed: (1) 1 h of exercise, (2) exercise until 2% or (3) 4% of body mass has been lost or replaced. Limited to the first and fourth training week, a 12 min walking/running time-trial was completed following the 2 and 4% exercise bouts. Trail making, the Wisconsin card sort, the Stop signal task, Simple visual reaction time and Corsi block-tapping tests were performed immediately following the time-trials. Body mass loss was maintained p p > 0.05). From a practical perspective, the gains in cognitive performance following training to DEH were mostly unclear, but under certain circumstances, were greater than when EUH was maintained. Based on the battery of cognitive tests used in the current study, we conclude that whether physically active individuals are habituated or not to its effect, exercise-induced hypohydration of 2 and 4% has, in general, no or unclear impact on cognitive performance immediately following exercise. These results encourage further research in this area

    Alliance for clinical trials in Oncology (Alliance) trial A022101/NRG-GI009: a pragmatic randomized phase III trial evaluating total ablative therapy for patients with limited metastatic colorectal cancer: evaluating radiation, ablation, and surgery (ERASur)

    No full text
    Abstract Background For patients with liver-confined metastatic colorectal cancer (mCRC), local therapy of isolated metastases has been associated with long-term progression-free and overall survival (OS). However, for patients with more advanced mCRC, including those with extrahepatic disease, the efficacy of local therapy is less clear although increasingly being used in clinical practice. Prospective studies to clarify the role of metastatic-directed therapies in patients with mCRC are needed. Methods The Evaluating Radiation, Ablation, and Surgery (ERASur) A022101/NRG-GI009 trial is a randomized, National Cancer Institute-sponsored phase III study evaluating if the addition of metastatic-directed therapy to standard of care systemic therapy improves OS in patients with newly diagnosed limited mCRC. Eligible patients require a pathologic diagnosis of CRC, have BRAF wild-type and microsatellite stable disease, and have 4 or fewer sites of metastatic disease identified on baseline imaging. Liver-only metastatic disease is not permitted. All metastatic lesions must be amenable to total ablative therapy (TAT), which includes surgical resection, microwave ablation, and/or stereotactic ablative body radiotherapy (SABR) with SABR required for at least one lesion. Patients without overt disease progression after 16–26 weeks of first-line systemic therapy will be randomized 1:1 to continuation of systemic therapy with or without TAT. The trial activated through the Cancer Trials Support Unit on January 10, 2023. The primary endpoint is OS. Secondary endpoints include event-free survival, adverse events profile, and time to local recurrence with exploratory biomarker analyses. This study requires a total of 346 evaluable patients to provide 80% power with a one-sided alpha of 0.05 to detect an improvement in OS from a median of 26 months in the control arm to 37 months in the experimental arm with a hazard ratio of 0.7. The trial uses a group sequential design with two interim analyses for futility. Discussion The ERASur trial employs a pragmatic interventional design to test the efficacy and safety of adding multimodality TAT to standard of care systemic therapy in patients with limited mCRC. Trial registration ClinicalTrials.gov: NCT05673148, registered December 21, 2022
    corecore