20 research outputs found

    An evaluation on mechanisms of miscibility development in acid gas injection for volatile oil reservoirs

    Get PDF
    International audienceProduced gas containing the acid gas reinjection is one of the effective enhanced oil recovery methods, not only saving costs of disposing acid gases and zero discharge of greenhouse gases but also supporting reservoir pressure. The subsurface fluid from the Carboniferous carbonate reservoir in the southern margin of the Pre-Caspian basin in Central Asia has low density, low viscosity, high concentrations of H2S (15%) and CO2 (4%), high solution gas/oil ratio. The reservoir is lack of fresh water because of being far away onshore. Pilot test has already been implemented for the acid gas reinjection. Firstly, in our work a scheme of crude oil composition grouping with 15 compositions was presented on the basis of bottomhole sampling from DSTs of four wells. After matching PVT physical experiments including viscosity, density and gas/oil ratio and pressure–temperature (P–T) phase diagram by tuning critical properties of highly uncertain heavy components, the compositional model with phase behavior was built under meeting accuracy of phase fitting, which was used to evaluate mechanism of miscibility development in the acid gas injection process. Then using a cell-to-cell simulation method, vaporizing and/or condensing gas drive mechanisms were investigated for mixtures consisting of various proportions of CH4, CO2 and H2S in the gas injection process. Moreover, effects of gas compositions on miscible mechanisms have also been determined. With the aid of pressure-composition diagrams and pseudoternary diagrams generated from the Equation of State (EoS), pressures of First Contact Miscibility (FCM) and Multiple Contact Miscibility (MCM) for various gases mixing with the reservoir oil sample under reservoir temperature were calculated. Simulation results show that pressures of FCM are higher than those of MCM, and CO2 and H2S are able to reduce the miscible pressure. At the same time, H2S is stronger. As the CH4 content increases, both pressures of FCM and MCM are higher. But incremental values of MCM decrease. In addition, calculated envelopes of pseudoternary diagrams for mixtures of CH4, CO2 and H2S gases of varying composition with acid gas injection have features of bell shape, hourglass shape and triangle shape, which can be used to identify vaporizing and/or condensing gas drives. Finally, comparison of the real produced gas and the one deprived of its C3+ was performed to determine types of miscibility and calculate pressures of FCM and MCM. This study provides a theoretical guideline for selection of injection gas to improve miscibility and oil recovery

    Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function

    Get PDF
    Edge effect is regarded as one of the most difficult technical issues in a computer controlled optical surfacing (CCOS) process. Traditional opticians have to even up the consequences of the two following cases. Operating CCOS in a large overhang condition affects the accuracy of material removal, while in a small overhang condition, it achieves a more accurate performance, but leaves a narrow rolled-up edge, which takes time and effort to remove. In order to control the edge residuals in the latter case, we present a new concept of the ‘heterocercal’ tool influence function (TIF). Generated from compound motion equipment, this type of TIF can ‘transfer’ the material removal from the inner place to the edge, meanwhile maintaining the high accuracy and efficiency of CCOS. We call it the ‘heterocercal’ TIF, because of the inspiration from the heterocercal tails of sharks, whose upper lobe provides most of the explosive power. The heterocercal TIF was theoretically analyzed, and physically realized in CCOS facilities. Experimental and simulation results showed good agreement. It enables significant control of the edge effect and convergence of entire surface errors in large tool-to-mirror size-ratio conditions. This improvement will largely help manufacturing efficiency in some extremely large optical system projects, like the tertiary mirror of the Thirty Meter Telescope

    Hydraulic supports for polishing TMT M3MP

    Get PDF
    For polishing the ultra-thin TMT M3MP, a polishing support system with 18 hydraulic supports (HS) is introduced. This work focuses on the designing and testing of these HSs. Firstly the design concept of HS system is discussed; then mechanical implementation of the HS structure is carried out, with special consideration of fluid cycling, work pressurization and the weight component. Afterward the piping installation and the de-gas process for the working fluid are implemented. Pressurization and stiffness are well checked before system integration for the single HS unit. Finally the support system is integrated for the polishing process

    The Application of Pentaprism Scanning Technology on the Manufacturing of M3MP

    Get PDF
    The PSS (pentaprism scanning system) has advantages of simple structure, needless of reference flat, be able of on-site testing, etc, it plays an important role in large flat reflective mirror’s manufacturing, especially the high accuracy testing of low order aberrations. The PSS system measures directly the slope information of the tested flat surface. Aimed at the unique requirement of M3MP, which is the prototype mirror of the tertiary mirror in TMT (Thirty Meter Telescope) project, this paper analyzed the slope distribution of low order aberrations, power and astigmatism, which is very important in the manufacturing process of M3MP. Then the sample route lines of PSS are reorganized and new data process algorism is implemented. All this work is done to improve PSS’s measure sensitivity of power and astigmatism, for guiding the manufacturing process of M3MP

    Hydraulic supports for polishing TMT M3MP

    Get PDF
    For polishing the ultra-thin TMT M3MP, a polishing support system with 18 hydraulic supports (HS) is introduced. This work focuses on the designing and testing of these HSs. Firstly the design concept of HS system is discussed; then mechanical implementation of the HS structure is carried out, with special consideration of fluid cycling, work pressurization and the weight component. Afterward the piping installation and the de-gas process for the working fluid are implemented. Pressurization and stiffness are well checked before system integration for the single HS unit. Finally the support system is integrated for the polishing process

    Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function

    Get PDF
    Edge effect is regarded as one of the most difficult technical issues in a computer controlled optical surfacing (CCOS) process. Traditional opticians have to even up the consequences of the two following cases. Operating CCOS in a large overhang condition affects the accuracy of material removal, while in a small overhang condition, it achieves a more accurate performance, but leaves a narrow rolled-up edge, which takes time and effort to remove. In order to control the edge residuals in the latter case, we present a new concept of the ‘heterocercal’ tool influence function (TIF). Generated from compound motion equipment, this type of TIF can ‘transfer’ the material removal from the inner place to the edge, meanwhile maintaining the high accuracy and efficiency of CCOS. We call it the ‘heterocercal’ TIF, because of the inspiration from the heterocercal tails of sharks, whose upper lobe provides most of the explosive power. The heterocercal TIF was theoretically analyzed, and physically realized in CCOS facilities. Experimental and simulation results showed good agreement. It enables significant control of the edge effect and convergence of entire surface errors in large tool-to-mirror size-ratio conditions. This improvement will largely help manufacturing efficiency in some extremely large optical system projects, like the tertiary mirror of the Thirty Meter Telescope

    Fabrication of a 4 m SiC Aspheric Mirror Using an Optimized Strategy of Dividing an Error Map

    No full text
    This paper introduces an optimization strategy for fabricating large aspheric mirrors. We polished a large SiC aspheric mirror, 4 m in diameter, achieving a surface error of 1/40λ RMS. To the best of our knowledge, this is the first instance of such a result for a mirror of this material and size combination. Due to the various performance settings of different tools, achieving optimal polishing results with a single setting is challenging. We evaluated the performance of various tool settings and developed an optimization strategy, dividing error maps to enhance efficiency in large-aperture aspheric mirror fabrication. We established the relationship between tool size and its error control capability. The residual error map of the mirror was divided into two parts using Zernike polynomial expansion based on the frequency order of the error map. Here, we used the first 36 terms of the Zernike polynomial fit to define a low-order error map, and the residual error was used to define a high-order error map. Large tools were used to correct the low-order frequency error map, whereas small tools were used to correct the high-order frequency error map. Therefore, the original residual error map could be corrected with significantly high efficiency. By employing this strategy, we fabricated a 4 m SiC aspheric mirror in 18 months, achieving a final surface error better than 0.024λ RMS

    The effect of impurity on miscible CO2 displacement mechanism

    No full text
    International audienceThe CO2 displacement is one of the gasflooding Enhanced Oil Recovery (EOR) methods. The application from volatile oil to black oil is popular mainly because CO2 requires a relatively low miscibility pressure, which is suitable to most reservoir conditions. However, CO2 always contains some impurity, such as CH4, H2S and N2, leading to the change of phase behavior and flooding efficiency. Whether the gasflooding achieves successfully miscible displacement depends on the reservoir pressure and temperature, injected solvent and crude oil compositions. So three different types of oil samples from the real field are selected and mixtures of CH4, H2S and N2 with various CO2 concentrations as the solvent are considered. After a series of experimental data are excellently matched, three nine-pseudocomponent models are generated based on the thermodynamic Equation-of-State (EoS), which are capable of accurately predicting the complicated phase behavior. Three common tools of pressure–temperature (P–T), pressure–composition (P–X) and pseudoternary diagrams are used to display and analyze the alteration of phase behavior and types of displacement mechanism. Simulation results show that H2S is favorable to attain miscibility while CH4 and N2 are adverse, and the former can reduce the Multiple Contact Miscibility (MCM) pressure by the maximum level of 1.675 MPa per 0.1 mol. In addition, the phase envelope of the mixtures CO2/H2S displacing the reservoir oil on the pseudoternary diagram behaves a triangle shape, indicating the condensing-dominated process. While most phase envelopes of CO2/CH4 and CO2/N2 exhibit the trump and bell shapes, revealing the MCM of vaporization
    corecore