4 research outputs found

    High-level rovibrational calculations on ketenimine

    No full text
    From an astrochemical point of view ketenimine (CH2CNH) is a complex organic molecule (COM) and therefore likely to be a building block for biologically relevant molecules. Since it has been detected in the star-forming region Sagittarius B2(N), it is of high relevance in this field. Although experimental data are available for certain bands, for some energy ranges such as above 1200 cm-1 reliable data virtually do not exist. In addition, high-level ab initio calculations are neither reported for ketenimine nor for one of its deuterated isotopologues. In this paper, we provide for the first time data from accurate quantum chemical calculations and a thorough analysis of the full rovibrational spectrum. Based on high-level potential energy surfaces obtained from explicitly correlated coupled-cluster calculations including up to 4-mode coupling terms, the (ro)vibrational spectrum of ketenimine has been studied in detail by variational calculations relying on rovibrational configuration interaction (RVCI) theory. Strong Fermi resonances were found for all isotopologues. Rovibrational infrared intensities have been obtained from dipole moment surfaces determined from the distinguishable cluster approximation. A comparison of the spectra of the CH2CNH molecule with experimental data validates our results, but also reveals new insight about the system, which shows very strong Coriolis coupling effects

    Tuning Charge Order in (TMTTF)2X by Partial Anion Substitution

    No full text
    In the quasi-one-dimensional (TMTTF)2X compounds with effectively quarter-filled bands, electronic charge order is stabilized from the delicate interplay of Coulomb repulsion and electronic bandwidth. The correlation strength is commonly tuned by physical pressure or chemical substitution with stoichiometric ratios of anions and cations. Here, we investigate the charge-ordered state through partial substitution of the anions in (TMTTF)2[AsF6]1−x[SbF6]x with x≈0.3, determined from the intensity of infrared vibrations, which is sufficient to suppress the spin-Peierls state. Our dc transport experiments reveal a transition temperature TCO = 120 K and charge gap ΔCO=430 K between the values of the two parent compounds (TMTTF)2AsF6 and (TMTTF)2SbF6. Upon plotting the two parameters for different (TMTTF)2X, we find a universal relationship between TCO and ΔCO yielding that the energy gap vanishes for transition temperatures TCO≤60 K. While these quantities indicate that the macroscopic correlation strength is continuously tuned, our vibrational spectroscopy results probing the local charge disproportionation suggest that 2δ is modulated on a microscopic level

    Tuning Charge Order in (TMTTF)<sub>2</sub><i>X</i> by Partial Anion Substitution

    No full text
    In the quasi-one-dimensional (TMTTF)2X compounds with effectively quarter-filled bands, electronic charge order is stabilized from the delicate interplay of Coulomb repulsion and electronic bandwidth. The correlation strength is commonly tuned by physical pressure or chemical substitution with stoichiometric ratios of anions and cations. Here, we investigate the charge-ordered state through partial substitution of the anions in (TMTTF)2[AsF6]1−x[SbF6]x with x≈0.3, determined from the intensity of infrared vibrations, which is sufficient to suppress the spin-Peierls state. Our dc transport experiments reveal a transition temperature TCO = 120 K and charge gap ΔCO=430 K between the values of the two parent compounds (TMTTF)2AsF6 and (TMTTF)2SbF6. Upon plotting the two parameters for different (TMTTF)2X, we find a universal relationship between TCO and ΔCO yielding that the energy gap vanishes for transition temperatures TCO≤60 K. While these quantities indicate that the macroscopic correlation strength is continuously tuned, our vibrational spectroscopy results probing the local charge disproportionation suggest that 2δ is modulated on a microscopic level
    corecore