3 research outputs found

    Boundary scattering tomography of the Bose Hubbard model on general graphs

    Full text link
    Correlated quantum many-body phenomena in lattice models have been identified as a set of physically interesting problems that cannot be solved classically. Analog quantum simulators, in photonics and microwave superconducting circuits, have emerged as near-term platforms to address these problems. An important ingredient in practical quantum simulation experiments is the tomography of the implemented Hamiltonians -- while this can easily be performed if we have individual measurement access to each qubit in the simulator, this could be challenging to implement in many hardware platforms. In this paper, we present a scheme for tomography of quantum simulators which can be described by a Bose-Hubbard Hamiltonian while having measurement access to only some sites on the boundary of the lattice. We present an algorithm that uses the experimentally routine transmission and two-photon correlation functions, measured at the boundary, to extract the Hamiltonian parameters at the standard quantum limit. Furthermore, by building on quantum enhanced spectroscopy protocols that, we show that with the additional ability to switch on and off the on-site repulsion in the simulator, we can sense the Hamiltonian parameters beyond the standard quantum limit

    Extremum seeking control of quantum gates

    Full text link
    To be useful for quantum computation, gate operations must be maintained at high fidelities over long periods of time. In addition to decoherence, slow drifts in control hardware leads to inaccurate gates, causing the quality of operation of as-built quantum computers to vary over time. Here, we demonstrate a data-driven approach to stabilized control, combining extremum-seeking control (ESC) with direct randomized benchmarking (DRB) to stabilize two-qubit gates under unknown control parameter fluctuations. As a case study, we consider these control strategies in the context of a trapped ion quantum computer using physically-realistic simulation. We then experimentally demonstrate this control strategy on a state-of-the-art, commercial trapped-ion quantum computer.Comment: 5 pages, 6 figure

    Boundary measurement tomography of the Bose Hubbard model on general graphs

    No full text
    Correlated quantum many-body phenomena in lattice models have been identified as a set of physically interesting problems that cannot be solved classically. Analog quantum simulators, in photonics and microwave superconducting circuits, have emerged as near-term platforms to address these problems. An important ingredient in practical quantum simulation experiments is the tomography of the implemented Hamiltonians—while this can easily be performed if we have individual measurement access to each qubit in the simulator, this could be challenging to implement in many hardware platforms. In this paper, we present a scheme for tomography of quantum simulators which can be described by a Bose-Hubbard Hamiltonian while having measurement access to only some sites on the boundary of the lattice. We present an algorithm that uses the experimentally routine transmission and two-photon correlation functions, measured at the boundary, to extract the Hamiltonian parameters at the standard quantum limit. Furthermore, by building on quantum enhanced spectroscopy protocols that, we show that with the additional ability to switch on and off the on-site repulsion in the simulator, we can sense the Hamiltonian parameters beyond the standard quantum limit
    corecore