1,290 research outputs found
On the "spin-freezing" mechanism in underdoped superconducting cuprates
The letter deals with the spin-freezing process observed by means of NMR-NQR
relaxation or by muon spin rotation in underdoped cuprate superconductors. This
phenomenon, sometimes referred as coexistence of antiferromagnetic and
superconducting order parameters, is generally thought to result from randomly
distributed magnetic moments related to charge inhomogeneities (possibly
stripes) which exhibit slowing down of their fluctuations on cooling below
T . Instead, we describe the experimental findings as due to fluctuating,
vortex-antivortex, orbital currents state coexisting with d-wave
superconducting state. A direct explanation of the experimental results, in
underdoped YCaBaCuO and LaSrCuO,
is thus given in terms of freezing of orbital current fluctuations
Magnetic degeneracy and hidden metallicity of the spin density wave state in ferropnictides
We analyze spin density wave (SDW) order in iron-based superconductors and
electronic structure in the SDW phase. We consider an itinerant model for
Fe-pnictides with two hole bands centered at and two electron bands
centered at and in the unfolded BZ. A SDW order in such a
model is generally a combination of two components with momenta and
, both yield order in the folded zone. Neutron
experiments, however, indicate that only one component is present. We show that
or order is selected if we assume that only one hole band
is involved in the SDW mixing with electron bands. A SDW order in such 3-band
model is highly degenerate for a perfect nesting and hole-electron interaction
only, but we show that ellipticity of electron pockets and interactions between
electron bands break the degeneracy and favor the desired or
order. We further show that stripe-ordered system remains a metal for
arbitrary coupling. We analyze electronic structure for parameters relevant to
the pnictides and argue that the resulting electronic structure is in good
agreement with ARPES experiments. We discuss the differences between our model
and model of localized spins.Comment: reference list updated, typos are correcte
Dynamical charge susceptibility in layered cuprates: the influence of screened inter-site Coulomb repulsion
The analytical expression for dynamical charge susceptibility in layered
cuprates has been derived in the frame of singlet-correlated band model beyond
random-phase-approximation (RPA) scheme. Our calculations performed near
optimal doping regime show that there is a peak in real part of the charge
susceptibility at {\bf Q} = (, ) at strong
enough inter-site Coulomb repulsion. Together with the strong maximum in the Im
at 15 meV it confirms the formation of low-energetic
plasmons or charge fluctuations. This provides a jsutification that these
excitations are important and together with a spin flcutuations can contribute
to the Cooper pairing in layered cuprates. Analysing the charge susceptibilitiy
with respect to an instability we obtain a new plasmon branch, , along the Brillouin Zone. In particular, we have found that it goes to
zero near {\bf Q}
Polaron Effects on Superexchange Interaction: Isotope Shifts of , , and in Layered Copper Oxides
A compact expression has been obtained for the superexchange coupling of
magnetic ions via intermediate anions with regard to polaron effects at both
magnetic ions and intermediate anions. This expression is used to analyze the
main features of the behavior of isotope shifts for temperatures of three types
in layered cuprates: the Neel temperatures (), critical temperatures of
transitions to a superconducting state (), and characteristic temperatures
of the pseudogap in the normal state ().Comment: 4 pages, 1 figur
Theory of magnetic excitons in the heavy-fermion superconductor
We analyze the influence of unconventional superconductivity on the magnetic
excitations in the heavy fermion compound UPdAl. We show that it leads
to the formation of a bound state at energies well below 2 at the
antiferromagnetic wave vector {\textbf Q}=. Its signature is a
resonance peak in the spectrum of magnetic excitations in good agreement with
results from inelastic neutron scattering. Furthermore we investigate the
influence of antiferromagnetic order on the formation of the resonance peak. We
find that its intensity is enhanced due to intraband transitions induced by the
reconstruction of Fermi surface sheets. We determine the dispersion of the
resonance peak near {\textbf Q} and show that it is dominated by the magnetic
exciton dispersion associated with local moments. We demonstrate by a
microscopic calculation that UPdAl is another example in which the
unconventional nature of the superconducting order parameter can be probed by
means of inelastic neutron scattering and determined unambiguously.Comment: 6 pages, 4 figure
- …