1,736 research outputs found
Network patterns and strength of orbital currents in layered cuprates
In a frame of the model we derive the microscopical expression for
the circulating orbital currents in layered cuprates using the anomalous
correlation functions. In agreement with -on spin relaxation (SR),
nuclear quadrupolar resonance (NQR) and inelastic neutron scattering(INS)
experiments in YBaCuO we successfully explain the order of
magnitude and the monotonous increase of the {\it internal} magnetic fields
resulting from these currents upon cooling. However, the jump in the intensity
of the magnetic fields at T reported recently seems to indicate a
non-mean-field feature in the coexistence of current and superconducting states
and the deviation of the extended charge density wave vector instability from
its commensurate value {\bf Q}) in accordance with the
reported topology of the Fermi surface
Temperature Dependence of the Cu(2) NQR Line Width in YBaCuO
Systematic measurements of the Cu(2) NQR line width were performed in
underdoped YBaCuO samples over the temperature range 4.2 K
K. It was shown that the copper NQR line width monotonically increases
upon lowering temperature in the below-critical region, resembling temperature
behavior of the superconducting gap. The observed dependence is explained by
the fact that the energy of a condensate of sliding charge-current states of
the charge-density-wave type depends on the phase of order parameter.
Calculations show that this dependence appears only at . Quantitative
estimates of the line broadening at agree with the measurement results.Comment: 4 pages, 2 figure
Unconventional superconductivity and magnetism in SrRuO and related materials
We review the normal and superconducting state properties of the
unconventional triplet superconductor SrRuO with an emphasis on the
analysis of the magnetic susceptibility and the role played by strong
electronic correlations. In particular, we show that the magnetic activity
arises from the itinerant electrons in the Ru -orbitals and a strong
magnetic anisotropy occurs () due to spin-orbit
coupling. The latter results mainly from different values of the -factor for
the transverse and longitudinal components of the spin susceptibility (i.e. the
matrix elements differ). Most importantly, this anisotropy and the presence of
incommensurate antiferromagnetic and ferromagnetic fluctuations have strong
consequences for the symmetry of the superconducting order parameter. In
particular, reviewing spin fluctuation-induced Cooper-pairing scenario in
application to SrRuO we show how p-wave Cooper-pairing with line nodes
between neighboring RuO-planes may occur.
We also discuss the open issues in SrRuO like the influence of
magnetic and non-magnetic impurities on the superconducting and normal state of
SrRuO. It is clear that the physics of triplet superconductivity in
SrRuO is still far from being understood completely and remains to be
analyzed more in more detail. It is of interest to apply the theory also to
superconductivity in heavy-fermion systems exhibiting spin fluctuations.Comment: short review article. Annalen der Physik, vol. 13 (2004), to be
publishe
Dynamical charge susceptibility in layered cuprates: the influence of screened inter-site Coulomb repulsion
The analytical expression for dynamical charge susceptibility in layered
cuprates has been derived in the frame of singlet-correlated band model beyond
random-phase-approximation (RPA) scheme. Our calculations performed near
optimal doping regime show that there is a peak in real part of the charge
susceptibility at {\bf Q} = (, ) at strong
enough inter-site Coulomb repulsion. Together with the strong maximum in the Im
at 15 meV it confirms the formation of low-energetic
plasmons or charge fluctuations. This provides a jsutification that these
excitations are important and together with a spin flcutuations can contribute
to the Cooper pairing in layered cuprates. Analysing the charge susceptibilitiy
with respect to an instability we obtain a new plasmon branch, , along the Brillouin Zone. In particular, we have found that it goes to
zero near {\bf Q}
- β¦