5 research outputs found

    Evaluation of uncertainty sources in the determination of testosterone in urine by calibration-based and isotope dilution quantification using ultra high performance liquid chromatography tandem mass spectrometry

    Get PDF
    Three quantification methodologies, namely calibration with internal standard (Cal-IS, non-weighted), weighted calibration with internal standard (wCal-IS) and isotope pattern deconvolution (IPD) have been used for the determination of testosterone in urine by LC-MS/MS. Uncertainty has been calculated and compared for the three methodologies through intra- and inter-laboratory reproducibility assays. IPD showed the best performance for the intra-laboratory reproducibility, with RSD and combined uncertainty values below 4% and 9% respectively. wCal-IS showed similar performance, while Cal-IS where not constant and clearly worse at the lowest concentration assayed (2 ng/mL) reaching RSD values up to 16%. The inter-laboratory assay indicated similar results although wCal-IS RSD (20%) was higher than IPD (10%) and Cal-IS get worse with RSD higher than 40% for the lowest concentration level. Uncertainty budgets calculated for the three procedures revealed that intercept and slope were the most important factors contributing to uncertainty for Cal-IS. The main factors for wCal-IS and IPD were the volumes of sample and/or standard measured.The authors acknowledge financial support from the Generalitat Valenciana (Research group of excellence Prometeo II 2014/023 and Collaborative Research on Environment and Food Safety ISIC/2012/016), as well as University Jaume I for project PB1-1B2013-55. Finally, the authors are grateful to the Serveis Centrals d'Instrumentació Científica (SCIC) of University Jaume I for using Acquity and TQD instruments

    Sintesi hidrotermal bidezko titanio dioxidozko nanohodien lorpena

    Get PDF
    [EUS] Gaur egun nanozientzia zientzia eta teknologia arlo guztietara zabaldu da, gizarte garapenean eragin handia izan du. Ikerkuntza arlo guztietara zabaldu da ezinezkoak ziruditen erronkak argitu eta ezezagunak ditugun ezagutzak garatzeko asmoz. Lan honetan TiO2 nanohagatxoen sintesia burutu da metodo hidrotermala erabiliz. Sintesi baldintzek lortutako produktuaren egituran eta forman duten eragina kontuan harturik, sintesia gertatzeko ezinbestekoak diren pHa, tenperatura eta denbora aztertu dira. Ondoren, tratamendu kimiko eta termiko ezberdinen bidez konposizio eta egitura ezberdinak lor daitezkeela frogatu da. Bereziki, surfaktante eta pHaren arabera egitura ezberdinak lortzen direla ikusirik. Sintetizatutako laginen karakterizazioa burutzeko X izpien difrakzioa, transmisio bidezko mikroskopia elektronikoa, infragorri espektroskopia, eta termograbimetria teknikak erabili dira. Hauen bidez NaTi3O6·(OH)x·(H2O)y , (TiO2)x(H2O)y , anatasa eta rutilo faseak identifikatu dira, eta nanohagatxoen lodiera eta morfologia ezberdinak ikusi dira.[EN] Nowadays nanoscience is extending to all fields of science and technology, having much influence on the development of society. It has spreaded to all fields of research to solve different challenges and develop ideas that we don´t know until now. In this project nanorods of TiO2 have been synthesized by hydrothermal method. Taking into account that different conditions of synthesis produce different structure and shape of samples, the necessary pH, temperature and reaction time have been analized. Also we have shown chemical and thermal treatments affect to the composition and structure of samples. Specially, the synthesis by surfactant on different pH which can produce very different structures. The synthesized samples have been analizen by X ray diffraction , transmission electronic microscopy, infrared spectroscopy and thermogravimetry. By this techniques we have identified NaTi3O6·(OH)x·(H2O)y , (TiO2)x(H2O)y , anatase and rutile phases, and we also have measured the size and shape of the samples

    Isotope Dilution LC-ESI-MS/MS and low resolution Selected Reaction Monitoring as a tool for the accurate quantification of urinary testosterone

    No full text
    A new analytical method for the quantification of testosterone in human urine samples by isotope dilution mass spectrometry is proposed. A standard solution of 13C2-testosterone is added to the samples at the beginning of the sample preparation procedure and then the measurements are carried out by UHPLC-ESI-MS/MS. In the proposed method, the resolution of the first quadrupole of the tandem MS instrument is reduced to transmit the whole precursor ion cluster to the collision cell and measure the isotopic distribution of the in-cell product ions with a small number of SRM transitions. The construction of a methodological calibration graph is avoided using a labelled analogue previously characterised in terms of concentration and isotopic enrichment in combination with multiple linear regression. In this way, the molar fractions of natural and labelled testosterone are calculated in each sample injection and the amount of endogenous testosterone computed from the known amount of labelled analogue. Recovery values between 97 and 107% and precisions between 0.4 and 3.7% (as %RSD) were obtained for testosterone concentrations in urine in the range of 1 to 8 ng g-1. The proposed low resolution SRM methodology was compared for the analysis of human urine samples with the traditional IDMS method based on a calibration graph and the IDMS method based on multiple linear regression combined with standard resolution SRM. A similar accuracy and precision was obtained by the three tested approaches. However, using the low resolution SRM method there was no need to resort to calibration graphs or to specific dedicated software to calculate isotopic distributions by tandem MS and a higher sensitivity was obtained. The proposed low resolution SRM method was successfully applied to the analysis of the certified freeze-dried human urine NMIA MX005

    Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review

    No full text
    corecore