2 research outputs found

    Comprehensive genomic profiling reveals prognostic signatures and insights into the molecular landscape of colorectal cancer

    Get PDF
    BackgroundColorectal cancer (CRC) is a prevalent malignancy with diverse molecular characteristics. The NGS-based approach enhances our comprehension of genomic landscape of CRC and may guide future advancements in precision oncology for CRC patients.MethodIn this research, we conducted an analysis using Next-Generation Sequencing (NGS) on samples collected from 111 individuals who had been diagnosed with CRC. We identified somatic and germline mutations and structural variants across the tumor genomes through comprehensive genomic profiling. Furthermore, we investigated the landscape of driver mutations and their potential clinical implications.ResultsOur findings underscore the intricate heterogeneity of genetic alterations within CRC. Notably, BRAF, ARID2, KMT2C, and GNAQ were associated with CRC prognosis. Patients harboring BRAF, ARID2, or KMT2C mutations exhibited shorter progression-free survival (PFS), whereas those with BRAF, ARID2, or GNAQ mutations experienced worse overall survival (OS). We unveiled 80 co-occurring and three mutually exclusive significant gene pairs, enriched primarily in pathways such as TP53, HIPPO, RTK/RAS, NOTCH, WNT, TGF-Beta, MYC, and PI3K. Notably, co-mutations of BRAF/ALK, BRAF/NOTCH2, BRAF/CREBBP, and BRAF/FAT1 correlated with worse PFS. Furthermore, germline AR mutations were identified in 37 (33.33%) CRC patients, and carriers of these variants displayed diminished PFS and OS. Decreased AR protein expression was observed in cases with AR germline mutations. A four-gene mutation signature was established, incorporating the aforementioned prognostic genes, which emerged as an independent prognostic determinant in CRC via univariate and multivariate Cox regression analyses. Noteworthy BRAF and ARID2 protein expression decreases detected in patients with their respective mutations.ConclusionThe integration of our analyses furnishes crucial insights into CRC’s molecular characteristics, drug responsiveness, and the construction of a four-gene mutation signature for predicting CRC prognosis

    Effect of ultrasound on the true flotation of lignite and its entrainment behavior

    No full text
    In this study, the ultrasound was fixed in the pulp zone of flotation cell and its effect on the true flotation of lignite was analyzed. Flotation results indicated that the simultaneous ultrasound treatment increased the concentrate yield and decreased the concentrate ash content. Screening analysis of flotation products revealed that the ultrasound could crush coarse coal to fine coal and scanning electron microscopy (SEM) tests indicated that the ultrasound could reduce the coverage of high-ash coal fines on the coarse particle surface. Thus, the flotation recovery of coarse lignite particle was increased. In addition, the true flotation and entrainment of −0.074 mm fine particles were studied by the sink-float test and the method of Trahar. It was found the ultrasound significantly enhanced the true flotation of fine particles and improved the overall water recovery in lignite flotation
    corecore