183 research outputs found
Evaluation of Silicone Fluids and Resins as CO2Thickeners for Enhanced Oil Recovery Using a Computational and Experimental Approach
CO2thickeners have the potential to be a game changer for enhanced oil recovery, carbon capture utilization and storage, and hydraulic fracturing. Thickener design is challenging due to polymers’ low solubility in supercritical CO2(scCO2) and the difficulty of substantially increasing the viscosity of CO2. In this contribution, we present a framework to design CO2soluble thickeners, combining calculations using a quantum mechanical solvation model with direct laboratory viscosity testing. The conductor-like polarizable continuum model for solvation free-energy calculations was used to determine functional silicone and silsesquioxane solubilities in scCO2. This method allowed for a fast and efficient identification of CO2-soluble compounds, revealing silsesquioxanes as more CO2-philic than linear polydimethylsiloxane (PDMS), the most efficient non-fluorinated thickener know to date. The rolling ball apparatus was used to measure the viscosity of scCO2with both PDMS and silicone resins with added silica nanoparticles. Methyl silicone resins were found to be stable and fast to disperse in scCO2while having a significant thickening effect. They have a larger effect on the solution viscosity than higher-molecular-weight PDMS and are able to thicken CO2even at high temperatures. Silicone resins are thus shown to be promising scCO2thickeners, exhibiting enhanced solubility and good rheological properties, while also having a moderate cost and being easily commercially attainable.Fil: Gallo, Gonzalo. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Erdmann, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentin
Optimal design of a carbon dioxide separation process with market uncertainty and waste reduction
The aim of this work is to optimize the conceptual design of an amine-based carbon dioxide (CO2) separation process for Enhanced Oil Recovery (EOR). A systematic approach is applied to predict the economic profitability of the system while reducing the environmental impacts. Firstly, we model the process with UniSim and determine the governing degrees of freedom (DoF) through a sensitivity analysis. Then, we proceed with the formulation of the economic problem, where the employment of econometric models allows us to predict the highest dynamic economic potential (DEP). In the second part, we apply the Waste Reduction (WAR) algorithm to quantify the environmental risks of the studied process. This method is based on the minimization of the potential environmental indicator (PEI) by using the generalization of the Waste Reduction algorithm. Results show that the CO2 separation plant is promising in terms of economic revenues. However, the PEI value indicates that the higher the profitability, the larger the environmental risk. The optimal value of the DEP corresponds to 0.0274 kmol/h and 60 ◦C, with a plant capacity according to the mole flow rate of the produced acid gas. In addition, the highest environmental risk is observed at the upper bounds of the DoF.Fil: Gutierrez, Juan Pablo. Universidad Nacional de Salta. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Erdmann, Eleonora. Universidad Nacional de Salta. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Manca, Davide. Politecnico di Milano; Itali
Barrier Properties and Structural Study of Nanocomposite of HDPE/Montmorillonite Modified with Polyvinylalcohol
In this work was studied the permeation of CO2 in films of high-density polyethylene (HDPE) and organoclay modified with polyvinylalcohol (MMTHDTMA/PVA) obtained frommelt blending. Permeation study showed that the incorporation of the modified organoclay generates a significant effect on the barrier properties of HDPE. When a load of 2wt% of MMTHDTMA/PVA was incorporated in the polymer matrix, the flow of CO2 decreased 43.7% compared to pure polyethylene.The results of TEM showed that clay layers were dispersed in the polymeric matrix, obtaining an exfoliated-structure nanocomposite. The thermal stability of nanocomposite was significantly enhanced with respect to the pristine HDPE. DSC results showed that the crystallinity was maintained as the pure polymericmatrix. Consequently, the decrease of permeability was attributable only to the effect of tortuosity generated by the dispersion ofMMTHDTMA/PVA. Notably the mechanical properties remain equal to those of pure polyethylene, but with an increase in barrier properties to CO2. This procedure allows obtaining nanocomposites of HDPE with a good barrierproperty to CO2 which would make it competitive in the use of packaging. with an increase in barrier properties to CO2. This procedure allows obtaining nanocomposites of HDPE with a good barrier property to CO2 which would make it competitive in the use of packaging.Fil: Carrera, María Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); ArgentinaFil: Erdmann, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); Argentina. Instituto Tecnologico de Buenos Aires; ArgentinaFil: Destefanis, Hugo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); Argentin
Effects of Preparation Methods of Organoclays with Polyvinyl Alcohol in their Compatibility with HDPE. Thermal Stability
In this paper, the effect of polyvinyl alcohol addition on organoclay obtained by in situ polymerization and subsequent alcoholysis of polyvinyl acetate is studied. The incorporation of the monomer is carried out following two procedures. The first is the incorporation of the monomer by direct contact between the monomer and the organoclay. The second procedure involves a first step of impregnating the organoclay with propyl alcohol and the subsequent incorporation of the monomer. Both procedures consist of the polymerization in situ via a free radical mechanism. PVA modified clays showed substantial improvements in thermal properties with respect to the organoclay (MMTHDTMA), corresponding to the greater stability to clay obtained by direct contact with the monomer, PVAMMT/HDTMA (VA). The clays prepared by both methodswere incorporated into a HDPE matrix by melt blending, to study the effect of the method of preparing the organoclay with PVA in the polymer/clay compatibility and the effect on their thermal properties. The material characterization techniques were performed using X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal analysis (TG, DTG, DSC) and transmission electron microscopy (TEM). The results show a clear improvement in the HDPE thermal properties with the addition of organoclays containing PVA and allow a discussion of effect of preparation on compatibility and improved thermal properties.Fil: Carrera, María Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); ArgentinaFil: Erdmann, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); Argentina. Instituto Tecnologico de Buenos Aires; ArgentinaFil: Destefanis, Hugo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); Argentin
Diseño del proceso de una torre de vacío: Ventajas de la simulación
Los hidrocarburos pesados son el mayor recurso del petróleo en el mundo, sin embargo en el pasado se habían dejado de lado como recurso energético debido a las dificultades y costos asociados de su producción. La industria financia estas investigaciones por la importancia del tema en producción y caracterización. Al trabajar con una torre de vacio los datos necesarios para los cálculos son las temperaturas ASTM (10mmHg) y la densidad del crudo con la cual se obtiene la curva TBP760 (True Boiling Point), también se necesita las especificaciones de los productos y los rendimientos respecto de la alimentación. Para poder correlacionar los distintos puntos de ebullición con los porcentajes de vaporizado para cada cambio de presión de los distintos productos, se construye un diagrama de fases con las temperaturas EFV760 (Equilibrium Flash Vaporization) y EFV10. El simulador a través de cálculos internos resuelve automáticamente el diagrama de fases, en comparación con la dificultad que representan los cálculos manuales del mismo, tal como son explicitados precedentemente. En este trabajo se desarrolla la simulación de una torre de vacío mediante el simulador Aspen HYSYS V8.3, empleando como alimentación un crudo pesado. Lo antes expuesto constituye una importante ventaja el uso del simulador frente al cálculo convencional, considerando los tiempos de resolución de los diseños de procesos.Heavy hydrocarbons are the greatest oil resource in the world, however in the past had been put aside as an energy resource due to the difficulties and costs associated with production. Nowdays, the industry is financing this research because of the importance of production and the characterization. To analyse the vacuum tower, we need ASTMD1160 temperature at 10 mmHg and oil density, thereafter it can be obtained the curve of TBP760 (True Boiling Point). To correlate different boiling points with vaporized percentages for each change of pressure on the products, is necesary to build up a phase diagram with the EFV760 (Equilibrium Flash Vaporization) and EFV10 temperature. The simulator through internal calculations resolves the phase diagram, compared with the difficulty posed by manual calculations. In this paper a vacuum tower simulator is developed by Aspen HYSYS V8.3, and using the heavy oil as input data. The major advantage of the theoretical designed simulation process is the time resolution.Fil: Vega, Judith Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; ArgentinaFil: Ale Ruiz, Liliana. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Martínez, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; ArgentinaFil: Erdmann, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; Argentina. Instituto Tecnológico de Buenos Aires; Argentin
Sensitivity analysis using dehydration process simulation of a conditioning plant for natural gas
Este trabajo describe el desarrollo de un simulador estacionario para los sectores de deshidratación y estabilización de una planta de tratamiento de gas natural. El simulador fue implementado empleando el simulador comercial ASPEN HYSYS®. El gas considerado en la simulación es un gas típico proveniente de yacimientos de la provincia de Salta (Argentina). La configuración de la planta y las condiciones de operación adoptadas para la simulación son las generalmente empleadas en el tratamiento de gas natural en Salta. Con el simulador desarrollado, se llevó a cabo un estudio de sensibilidad paramétrica de las principales variables operativas del proceso. La simulación realizada permite visualizar el proceso de deshidratación, y realizar un análisis de su comportamiento en función de las variables operativas críticas: concentración de la solución de TEG (70% p – 99% p) y temperatura del rehervidor (200 – 375 ºF).This paper describes the development of a steady simulator for the sectors of dehydration and stabilization of a natural gas treatment plant. The simulator was implemented by using the commercial simulator ASPEN HYSYS®. The gas considered in the simulation is a typical gas from deposits in the province of Salta (Argentina). The plant configuration and operating conditions adopted for the simulation are those generally used in the treatment of natural gas in Salta. With the developed simulator, a parametric sensitivity study of the major operating variables of the process was carried out. The simulation performed to visualize the process of dehydration, and analysis of their behavior depending on the variables critical operational: concentration of the solution of TEG (70 wt% - 99% p) and temperature of the reboiler (200 - 375 º F).Fil: Erdmann, Eleonora. Instituto Tecnologico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); Argentina. Universidad Nacional de Salta; ArgentinaFil: Ale Ruiz, Liliana. Universidad Nacional de Salta. Facultad de Ingenieria; ArgentinaFil: Benitez, Leonel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); Argentina. Universidad Nacional de Salta; ArgentinaFil: Tarifa, Enrique Eduardo. Universidad Nacional de Jujuy. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Improving barrier properties of HDPE using PVA as clay modifier
In this work it was prepared nanocomposites of high density polyethylene (HDPE) with different loads of modified organoclay with polyvinylalcohol (PVA). Modified organoclay was obtained by in situ polymerization of vinyl acetate with an organoclay and the nanocomposites were prepared by melt blending. The structure and morphology of nanocomposites were studied by XRD, SEM and TEM. The heat stability was measured by TGA and DSC. The barrier properties were evaluated by testing of cyclohexane pervaporation and the surface properties were obtained by determination from the contact angle using three solvents at ambient atmosphere. TEM results showed the different types of nanocomposite structures that were obtained with clay layers in the polymer matrix depending on the load of clay incorporated into the polymer matrix. The permeation experiments confirmed that the barrier properties evaluated by cyclohexane pervaporation were remarkably improved and increased in the thermal resistance for HDPE/ organoclay modified with PVA materials compared with pristine HDPE. Results from all studies showed that the addition of modified organoclay has changed the macroscopic properties of nanocomposites, as compared to that pure HDPE. This can be attributed to the different interaction of PVA with HDPE/filler.Fil: Carrera, María Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); ArgentinaFil: Erdmann, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); Argentina. Instituto Tecnologico de Buenos Aires; ArgentinaFil: Pastor, José María. Universidad de Valladolid. Escuela de Ingenierías Industriales. Departamento de Física de la Materia Condensada; EspañaFil: Destefanis, Hugo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); Argentin
Thermodynamic Properties for the Simulation of Crude Oil Primary Refining
Commonly, the use of simulators in the industry is performed without having a proper theoretical support. Sometimes this situation is a consequence of both, lack of time and the dairy dynamism required in the refinery industries. Particularly, the application of thermodynamic models is often not properly considered for the specific process under analysis. An undesirable fact can appear, for example, when a wrong properties package is chosen or even more when this selection step is completely ignored. The aim of this article is to prove that the habitual selection of the thermodynamic models is appropriate or not for the primary refining process. For the purpose, two available simulation softwares and thermodynamic models have been analyzed. The research paper focuses on establishing a guide for plant operators with information that has been previously proven, with theoretical support. In particular, for the oil crude atmospheric distillation (Topping), engineers use almost by default the Peng– Robinson thermodynamic package in Aspen Hysys simulator and Chao–Seader in Aspen Plus. Although the use of the thermodynamic property packages involves a whole theoretical support, this is not considered at the time of their election.Fil: Gutierrez, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); ArgentinaFil: Benitez, Leonel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); ArgentinaFil: Martínez, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); ArgentinaFil: Ale Ruiz, Liliana. Universidad Nacional de Salta. Facultad de Ingenieria; ArgentinaFil: Erdmann, Eleonora. Instituto Tecnologico de Buenos Aires; Argentin
Two noveland simple correlations to estimate equilibrium water dew point for natural gas dehydration process
Water is probably the most undesirable component found in crude natural gas because its presence can produce hydrate formation, and it can also lead to corrosion or erosion problems in pipes and equipment. Natural gas must be dehydrated before being transported through a long distance to ensure an efficient and trouble-free operation. Thermodynamic modelling of triethyleneglycol (TEG)-water system is still rather inaccurate, especially with regard to systems at high temperature and high TEG concentration. As a consequence, design and operation of absorber towers are affected by the lack of accurate data. Two novel correlations have been developed to estimate the equilibrium water dew point of a natural gas stream by evaluating experimental data and literature. These data were collected and analyzed by means of images scanned with MATLAB software R2012B version. An average percentage error is of 1-2% for linear correlation and it is of 2-3% for non-linear correlation. Results are quite accurate and they are consistent with literature data. Due to the simplicity and precision of the correlations developed in this work, the equations obtained have a great practical value. Consequently, they allow process engineers to perform a quick check of the water dew point at different conditions without using complex expressions or graphics.Fil: Benitez, Leonel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; ArgentinaFil: Gutierrez, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; ArgentinaFil: Erdmann, Eleonora. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; ArgentinaFil: Ale Ruiz, Liliana. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Tarifa, Enrique Eduardo. Universidad Nacional de Jujuy. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Topping Process Using Different Methodologies
The first process which crude oil undergoes in a refinery is the atmospheric distillation o topping, whose aim is to fraction the crude oil in their products: naphtha, kerosene, gas oil, etc. The stages involved are: process analysis, carrying out laboratory analysis, identification of parameters, determination of operating conditions and analysis of operating procedures, data processing, stationary simulation and development of results. The column to simulate consists of a rectification column with three side separators and a condenser. For modeling this process a conventional procedure was performed using the Excel spreadsheet. And for simulating stationary was used HYSYS software. First the crude was characterized by laboratory analysis. Starting from these analyses, the TBP curve was built and global properties of crude were defined. Resolved the crude oil physicochemical, a model of the column was built. The stationary states found from simulation were compared with the results of the conventional procedure; the comparison had an acceptable degree of consistency. Finally, a series of alternatives were studied for the design and operating conditions. By resolving the designing process of the topping column, the advantages and disadvantages of a simulator can be compared with a conventional resolution method.Fil: Martínez, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); ArgentinaFil: Ale Ruiz, Liliana. Universidad Nacional de Salta. Facultad de Ingenieria; ArgentinaFil: Vega, Judith Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); ArgentinaFil: Carrera, María Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación Para la Industria Química (i); ArgentinaFil: Erdmann, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); ArgentinaFil: Tarifa, Enrique Eduardo. Universidad Nacional de Jujuy. Facultad de Ingenieria; Argentin
- …