24 research outputs found

    Bayesian methods for segmentation of objects from multimodal and complex shape densities using statistical shape priors

    Get PDF
    In many image segmentation problems involving limited and low-quality data, employing statistical prior information about the shapes of the objects to be segmented can significantly improve the segmentation result. However, defining probability densities in the space of shapes is an open and challenging problem, especially if the object to be segmented comes from a shape density involving multiple modes (classes). In the literature, there are some techniques that exploit nonparametric shape priors to learn multimodal prior densities from a training set. These methods solve the problem of segmenting objects of limited and low-quality to some extent by performing maximum a posteriori (MAP) estimation. However, these methods assume that the boundaries found by using the observed data can provide at least a good initialization for MAP estimation so that convergence to a desired mode of the posterior density is achieved. There are two major problems with this assumption that we focus in this thesis. First, as the data provide less information, these approaches can get stuck at a local optimum which may not be the desired solution. Second, even though a good initialization directs the segmenting curve to a local optimum solution that looks like the desired segmentation, it does not provide a picture of other probable solutions, potentially from different modes of the posterior density, based on the data and the priors. In this thesis, we propose methods for segmentation of objects that come from multimodal posterior densities and suffer from severe noise, occlusion and missing data. The first framework that we propose represents the segmentation problem in terms of the joint posterior density of shapes and features. We incorporate the learned joint shape and feature prior distribution into a maximum a posteri- ori estimation framework for segmentation. In our second proposed framework, we approach the segmentation problem from the approximate Bayesian inference perspective. We propose two different Markov chain Monte Carlo (MCMC) sampling based image segmentation approaches that generates samples from the posterior density. As a final contribution of this thesis, we propose a new shape model that learns binary shape distributions by exploiting local shape priors and the Boltzmann machine. Although the proposed generative shape model has not been used in the context of object segmentation in this thesis, it has great potential to be used for this purpose. The source code of the methods introduced in this thesis will be available in https://github.com/eerdil

    A Markov chain Monte Carlo based rigid image registration method (Markov zincirli Monte Carlo tabanlı bir katı görüntü çakıştırma yöntemi)

    Get PDF
    We propose a Monte Carlo Markov Chain (MCMC) based method for image registration. We formulate the image registration problem within a Bayesian framework and generate samples from the resulting posterior density of the registration parameters using MCMC. Thus, posterior density is characterized through the samples that are drawn with the MCMC principle. When the posterior density is multimodal, samples from different modes of the posterior lead to different and meaningful solutions for the image registration problem. We perform experiments on pairs of test images which may admit multiple registration solutions. Preliminary results demonstrate the potential of the proposed approach

    A watershed and active contours based method for dendritic spine segmentation in 2-photon microscopy images (2-Foton mikroskopi görüntülerindeki dendritik dikenlerin bölütlenmesi için watershed ve etkin çevritlere dayalı bir yöntem)

    Get PDF
    Analysing morphological and volumetric properties of dendritic spines from 2-photon microscopy images has been of interest to neuroscientists in recent years. Developing robust and reliable tools for automatic analysis depends on the segmentation quality. In this paper, we propose a new segmentation algorithm for dendritic spine segmentation based on watershed and active contour methods. First, our proposed method coarsely segments the dendritic spine area using the watershed algorithm. Then, these results are further refined using a region-based active contour approach. We compare our results and the results of existing methods in the literature to manual delineations of a domain expert. Experimental results demonstrate that our proposed method produces more accurate results than the existing algorithms proposed for dendritic spine segmentation

    Automatic dendritic spine detection using multiscale dot enhancement filters and sift features

    Get PDF
    Statistical characterization of morphological changes of dendritic spines is becoming of crucial interest in the field of neurobiology. Automatic detection and segmentation of dendritic spines promises significant reductions on the time spent by the scientists and reduces the subjectivity concerns. In this paper, we present two approaches for automated detection of dendritic spines in 2-photon laser scanning microscopy (2pLSM) images. The first method combines the idea of dot enhancement filters with information from the dendritic skeleton. The second method learns an SVM classifier by utilizing some pre-labeled SIFT feature descriptors and uses the classifier to detect dendritic spines in new images. For the segmentation of detected spines, we employ a watershed-variational segmentation algorithm. We evaluate the proposed approaches by comparing with manual segmentations of domain experts and the results of a noncommercial software, NeuronIQ. Our methods produce promising detection rate with high segmentation accuracy thus can serve as a useful tool for spine analysis

    Disjunctive normal shape Boltzmann machine

    Get PDF
    Shape Boltzmann machine (a type of Deep Boltzmann machine) is a powerful tool for shape modelling; however, has some drawbacks in representation of local shape parts. Disjunctive Normal Shape Model (DNSM) is a strong shape model that can effectively represent local parts of objects. In this paper, we propose a new shape model based on Shape Boltzmann Machine and Disjunctive Normal Shape Model which we call Disjunctive Normal Shape Boltzmann Machine (DNSBM). DNSBM learns binary distributions of shapes by taking both local and global shape constraints into account using a type of Deep Boltzmann Machine. The samples generated using DNSBM look realistic. Moreover, DNSBM is capable of generating novel samples that differ from training examples by exploiting the local shape representation capability of DNSM. We demonstrate the performance of DNSBM for shape completion on two different data sets in which exploitation of local shape parts is important for capturing the statistical variability of the underlying shape distributions. Experimental results show that DNSBM is a strong model for representing shapes that are composed of local parts

    A joint classification and segmentation approach for dendritic spine segmentation in 2-photon microscopy images

    Get PDF
    Shape priors have been successfully used in challenging biomedical imaging problems. However when the shape distribution involves multiple shape classes, leading to a multimodal shape density, effective use of shape priors in segmentation becomes more challenging. In such scenarios, knowing the class of the shape can aid the segmentation process, which is of course unknown a priori. In this paper, we propose a joint classification and segmentation approach for dendritic spine segmentation which infers the class of the spine during segmentation and adapts the remaining segmentation process accordingly. We evaluate our proposed approach on 2-photon microscopy images containing dendritic spines and compare its performance quantitatively to an existing approach based on nonparametric shape priors. Both visual and quantitative results demonstrate the effectiveness of our approach in dendritic spine segmentation

    On comparison of different classification techniques for the fine-grained retail product recognition problem (Farklı sınıflandırma yöntemlerinin çoklu benzer perakende ürünlerin sınıflandırılması problemi için karşılaştırılması)

    Get PDF
    Classification systems of retail products have recently been gaining more importance. There are many classes of retail products and the resemblance of these products makes the design of product recognition systems, which have many application areas, more challenging. In this paper, we present a comparison of different classification techniques that are widely used in computer vision for image classification on retail product images taken by smart-phones

    Coupled shape priors for dynamic segmentation of dendritic spines

    Get PDF
    Segmentation of biomedical images is a challenging task, especially when there is low quality or missing data. The use of prior information can provide significant assistance for obtaining more accurate results. In this paper we propose a new approach for dendritic spine segmentation from microscopic images over time, which is motivated by incorporating shape information from previous time points to segment a spine in the current time point. In particular, using a training set consisting of spines in two consecutive time points to construct coupled shape priors, and given the segmentation in the previous time point, we can improve the segmentation process of the spine in the current time point. Our approach has been evaluated on 2-photon microscopy images of dendritic spines and its effectiveness has been demonstrated by both visual and quantitative results

    Biomedical image time series registration with particle filtering (Parçacık süzgeci ile biyomedikal görüntü zaman serisi çakıştırma)

    Get PDF
    We propose a family of methods for biomedical image time series registration based on Particle filtering. The first method applies an intensity-based information-theoretic approach to calculate importance weights. An effective second group of methods use landmark-based approaches for the same purpose by automatically detecting intensity maxima or SIFT interest points from image time series. A brute-force search for the best alignment usually produces good results with proper cost functions, but becomes computationally expensive if the whole search space is explored. Hill climbing optimizations seek local optima. Particle filtering avoids local solutions by introducing randomness and sequentially updating the posterior distribution representing probable solutions. Thus, it can be more robust for the registration of image time series. We show promising preliminary results on dendrite image time series
    corecore