38 research outputs found
The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle.
Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen
ANTI-CORROSION COATING OF MILD STEEL USING TERNARY Zn-ZnO-Y2O3 ELECTRO-DEPOSITON
Mild steel has found many engineering applications due to its great formability, availability, low
cost and good mechanical properties among others. However its functionality and durability is
subject of concern due to corrosion deterioration. Based on these, Yttria is selected as reinforcing
particles using electroplating process to enhance the corrosion and wear behaviors. Bath
formulation of Zinc- Yttria was prepared at moderated temperature and pH, to coat the sample.
Corrosion and wear behaviour were analyzed using electrochemical potentiostat and abrasive test
rig. The composition and microstructure of coated samples were investigated using standard
method. The microstructure of the deposited sample obtained at 10 % Yttria, revealed fine-grains
deposit of the Yttria on the mild steel surface. The results showed that adding of Yttria particles,
improved wear behaviour and corrosion resistance in sodium chloride solution. Microhardness of
the coated samples showed increases hardness values before and after heat treatment. This work
established that elecrodeposition of mild steel with Yttria is promising in increasing the wear and
corrosion resistanc
Recommended from our members
A Journey to the Center of a Bacterial Organelle
Cellular compartmentalization is a fundamental strategy through which complex tasks can be carried out, where each compartment carries out a specialized function. Compartmentalization strategies in the bacteria have (relatively) recently been discovered and are not present across the entire domain; they instead seem to be tied to niche specialization of the host species. For example, carboxysomes are necessary for all cyanobacteria to fix carbon dioxide in present-day atmospheric conditions. Carboxysomes are part of a larger family of bacterial organelles termed bacterial microcompartments (BMCs), which are all related by the proteinaceous shell that bounds the compartment. Many different metabolic functions have been attributed to BMCs, such as carbon fixation, propanediol metabolism, and ethanolamine metabolism, and cursory genome gazing had hinted that there may be several more functional types of these organelles in a vast number of bacteria. In order to survey the functional and phylogenetic diversity of BMCs, a bioinformatic algorithm was developed to predict and categorize genetic loci that encode genes that can construct a complete organelle. Our analyses result in a taxonomy of BMCs that identifies several candidate loci and individual genes for further investigation. We predicted many of these loci to encode for BMCs with novel functions, and examined one locus apparently isolated to the Planctomycetes and Verrucomicrobia phyla. By genetically manipulating Planctomyces limnophilus, we identified that this locus encodes a fully-functional organelle that is involved in degrading fucose and rhamnose, which is likely critical to the niche specialization of many Planctomycetes that associate with algae. We also found the widespread usage of a novel phosphotransacetylase enzyme in the BMCs. By analyzing the primary, secondary, and quaternary structures of this novel protein, we identify well-conserved motifs within distinct domains of the protein and identify a peptide that is involved in modulating the quaternary structure. One of the many uses of fundamental research is to provide the foundation for engineering synthetic constructs. Finally, we describe two bioengineering strategies geared towards the goal of improving the efficiency of the carbon fixation step of photosynthesis that are based on our knowledge of the cyanobacterial carbon concentrating mechanism, including the carboxysome. The first strategy focuses on the input for the carboxysome, where inorganic carbon must be transported into the cytosol. The second strategy utilizes a carboxysome assembly factor as a scaffolding mechanism
Recommended from our members
A Journey to the Center of a Bacterial Organelle
Cellular compartmentalization is a fundamental strategy through which complex tasks can be carried out, where each compartment carries out a specialized function. Compartmentalization strategies in the bacteria have (relatively) recently been discovered and are not present across the entire domain; they instead seem to be tied to niche specialization of the host species. For example, carboxysomes are necessary for all cyanobacteria to fix carbon dioxide in present-day atmospheric conditions. Carboxysomes are part of a larger family of bacterial organelles termed bacterial microcompartments (BMCs), which are all related by the proteinaceous shell that bounds the compartment. Many different metabolic functions have been attributed to BMCs, such as carbon fixation, propanediol metabolism, and ethanolamine metabolism, and cursory genome gazing had hinted that there may be several more functional types of these organelles in a vast number of bacteria. In order to survey the functional and phylogenetic diversity of BMCs, a bioinformatic algorithm was developed to predict and categorize genetic loci that encode genes that can construct a complete organelle. Our analyses result in a taxonomy of BMCs that identifies several candidate loci and individual genes for further investigation.We predicted many of these loci to encode for BMCs with novel functions, and examined one locus apparently isolated to the Planctomycetes and Verrucomicrobia phyla. By genetically manipulating Planctomyces limnophilus, we identified that this locus encodes a fully-functional organelle that is involved in degrading fucose and rhamnose, which is likely critical to the niche specialization of many Planctomycetes that associate with algae. We also found the widespread usage of a novel phosphotransacetylase enzyme in the BMCs. By analyzing the primary, secondary, and quaternary structures of this novel protein, we identify well-conserved motifs within distinct domains of the protein and identify a peptide that is involved in modulating the quaternary structure. One of the many uses of fundamental research is to provide the foundation for engineering synthetic constructs. Finally, we describe two bioengineering strategies geared towards the goal of improving the efficiency of the carbon fixation step of photosynthesis that are based on our knowledge of the cyanobacterial carbon concentrating mechanism, including the carboxysome. The first strategy focuses on the input for the carboxysome, where inorganic carbon must be transported into the cytosol. The second strategy utilizes a carboxysome assembly factor as a scaffolding mechanism
Recommended from our members
The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle.
Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen
Structural overview of <i>R</i>. <i>palustris</i> PduL from the <i>grm3</i> locus.
<p>(<b>a</b>) Primary and secondary structure of rPduL (tubes represent α-helices, arrows β-sheets and dashed line residues disordered in the structure. Blocks of ten residues are shaded alternatively black/dark gray. The first 33 amino acids are present only in the wildtype construct and contains the predicted EP alpha helix, α0); the truncated rPduLΔEP that was crystallized begins with M-G-V. Coloring is according to structural domains (domain 1 D36-N46/Q155-C224, blue; loop insertion G61-E81, grey; domain 2 R47-F60/E82-A154, red). Metal coordination residues are highlighted in light blue and CoA contacting residues in magenta, residues contacting the CoA of the other chain are also outlined. (<b>b</b>) Cartoon representation of the structure colored by domains and including secondary structure numbering. The N-and C-termini are in close proximity. Coenzyme A is shown in magenta sticks and Zinc (grey) as spheres.</p