4 research outputs found

    Laboratory measurements of instrumental signatures of the LSST camera focal plane

    No full text
    International audienceElectro-optical testing and characterization of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Camera focal plane, consisting of 205 charge-coupled devices (CCDs) arranged into 21 stand-alone Raft Tower Modules (RTMs) and 4 Corner Raft Tower Modules (CRTMs), is currently being performed at the SLAC National Accelerator Laboratory. Testing of the camera sensors is performed using a set of custom-built optical projectors, designed to illuminate the full focal plane or specific regions of the focal plane with a series of light illumination patterns: the crosstalk projector, the flat illuminator projector, and the spot grid projector. In addition to measurements of crosstalk, linearity and full well, the ability to project realistically-sized sources, using the spot grid projector, makes possible unique measurements of instrumental signatures such as deferred charge distortions, astrometric shifts due to sensor effects, and the brighter-fatter effect, prior to camera first light. Here we present the optical projector designs and usage, the electro-optical measurements and how these results have been used in testing and improving the LSST Camera instrumental signature removal algorithms

    Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS)

    No full text
    International audienceThe balloon-borne BACCUS experiment measures directly the elemental spectra of cosmic-ray nuclei from protons to Fe over the energy range ~10^12 to 10^15 eV. It focuses on the energy dependence of secondary to primary ratios (e.g. B/C) to investigate cosmic-ray propagation history. BACCUS consists of redundant and complementary particle detectors including the Timing Charge Detector (TCD), Transition Radiation Detector (TRD), Cherenkov Detector (CD), Silicon Charge Detector (SCD), and Calorimeter (CAL). The TCD measures the light yield produced by the particle in plastic scintillator. The TRD provides energy measurements of incident 3 ≤ Z ≤ 26 nuclei in the 102 – 105 Lorentz factor range. The CD responds only to particles with velocity exceeding the velocity of light in the plastic. It allows BACCUS to reject the abundant low energy cosmic rays present in the polar region. The CAL is used to determine the particle’s energy for all nuclei for 1 ≤ Z ≤ 26. With the SCD based on pixellation, in addition to the TCD based on timing, and the CD, the BACCUS instrument implements virtually all possible techniques to minimize the effect of backscatter on charge measurements in the presence of a large particle shower in the CAL. The 30 day flight was carried out successfully over Antarctica in 2016 from Nov. 28 to Dec. 28. The integration test, and performance of instruments will be presented

    Integration and verification testing of the LSST camera

    No full text
    International audienceThe Integration and Verification Testing of the Large Synoptic Survey Telescope (LSST) Camera is described. The LSST Camera will be the largest astronomical camera ever constructed, featuring a 3.2 giga-pixel focal plane mosaic of 189 CCDs with in-vacuum controllers and readout, dedicated guider and wavefront CCDs, a three element corrector with a 1.6-meter diameter initial optic, six optical filters covering wavelengths from 320 to 1000 nm with a novel filter exchange mechanism, and camera-control and data acquisition capable of digitizing each image in two seconds. In this paper, we describe the integration processes under way to assemble the Camera and the associated verification testing program. The Camera assembly proceeds along two parallel paths: one for the focal plane and cryostat and the other for the Camera structure itself. A range of verification tests will be performed interspersed with assembly to verify design requirements with a test-as-you-build methodology. Ultimately, the cryostat will be installed into the Camera structure as the two assembly paths merge, and a suite of final Camera system tests performed. The LSST Camera is scheduled for completion and delivery to the LSST observatory in 2020
    corecore