65 research outputs found

    Enhanced sorbents for the calcium looping cycle and effects of high oxygen concentrations in the calciner

    Get PDF
    Increasing CO2 emissions from the energy and industrial sectors are a worldwide concern due to the effects that these emissions have on the global climate. Carbon capture and storage has been identified as one of a portfolio of technologies that would mitigate the effects of global warming in the upcoming decades. Calcium looping is a second generation carbon capture technology aimed at reducing the CO2 emissions from the power and industrial sectors. This thesis assesses the improvement of the calcium looping cycle for CO2 capture through enhanced sorbent production and testing at lab-, bench- and pilot-scale, and a new operational mode with high oxygen concentrations in the calciner through experimental campaigns in Cranfield’s 25 kWth pilot unit. Novel biomass-templated sorbents were produced using the pelletisation technique and tested at different conditions in a thermogravimetric analyser (TGA) and a bench-scale plant comprising a bubbling fluidised bed (BFB) reactor. Moreover, the effects of sorbent poisoning by SO2, and the influence of steam were studied in order to explore the effects of real flue gas on this type of material. In addition to the chemical performance, the mechanical strength, i.e. resistance to fragmentation of these materials was tested. In additon, two different kinds of enhanced materials were produced and tested at pilot-scale. Namely, calcium aluminate pellets and HBr-doped limestone were used in experimental campaigns in Cranfield’s 25 kWth pilot plant comprising a CFB carbonator and a BFB calciner. The suitability of these materials for Ca looping was assessed and operation challenges were identified in order to provide a basis for synthetic sorbent testing at a larger scale. Lastly, a new operational mode was tested, which is aimed at reducing the heat provided to the calciner through high oxygen concentration combustion of a hydrocarbon (in this case natural gas) in the calciner. This approach reduces or even eliminates the recirculated CO2 stream in the calciner. In consequence, this results in a lower capital (reduced size of the calciner) and operational cost (less oxygen and less fuel use). Several pilot plant campaigns were performed using limestone as solid sorbent in order to prove this concept, which was successfully verified for concentrations of up to 100% vol oxygen in the inlet to the calciner

    Demonstration of a kW-scale solid oxide fuel cell-calciner for power generation and production of calcined materials

    Get PDF
    Carbonate looping (CaL) has been shown to be less energy-intensive when compared to mature carbon capture technologies. Further reduction in the efficiency penalties can be achieved by employing a more efficient source of heat for the calcination process, instead of oxy-fuel combustion. In this study, a kW-scale solid oxide fuel cell (SOFC)-integrated calciner was designed and developed to evaluate the technical feasibility of simultaneously generating power and driving the calcination process using the high-grade heat of the anode off-gas. Such a system can be integrated with CaL systems, or employed as a negative-emission technology, where the calcines are used to capture CO2 from the atmosphere. The demonstration unit consisted of a planar SOFC stack, operating at 750 °C, and a combined afterburner/calciner to combust hydrogen slip from the anode off-gas, and thermally decompose magnesite, dolomite, and limestone. The demonstrator generated up to 2 kWel,DC power, achieved a temperature in the range of 530–550 °C at the inlet of the afterburner, and up to 678 °C in the calciner, which was sufficient to demonstrate full calcination of magnesite, and partial calcination of dolomite. However, in order to achieve the temperature required for calcination of limestone, further scale-up and heat integration are needed. These results confirmed technical feasibility of the SOFC-calciner concept for production of calcined materials either for the market or for direct air capture (DAC)

    Calcium looping sorbents for CO2 capture

    Get PDF
    Calcium looping (CaL) is a promising technology for the decarbonation of power generation and carbon-intensive (cement, lime and steel) industries. Although CaL has been extensively researched, some issues need to be addressed before deployment of this technology at commercial scale. One of the important challenges for CaL is decay of sorbent reactivity during capture/regeneration cycles. Numerous techniques have been explored to enhance natural sorbent performance, to create new synthetic sorbents, and to re-activate and re-use deactivated material. This review provides a critical analysis of natural and synthetic sorbents developed for use in CaL. Special attention is given to the suitability of modified materials for utilisation in fluidised-bed systems. Namely, besides requirements for a practical adsorption capacity, a mechanically strong material, resistant to attrition, is required for the fluidised bed CaL operating conditions. However, the main advantage of CaL is that it employs a widely available and inexpensive sorbent. Hence, a compromise must be made between improving the sorbent performance and increasing its cost, which means a relatively practical, scalable, and inexpensive method to enhance sorbent performance, should be found. This is often neglected when developing new materials focusing only on very high adsorption capacity

    Pilot-scale calcination of limestone in steam-rich gas for direct air capture

    Get PDF
    A novel polygeneration concept, which has been proposed recently, comprises a fuel-cell calciner integrated system in order to produce electricity and lime which can be used for direct air capture (DAC) to remove CO2 from the atmosphere. However, the scalability of the integrated system needs to be further studied. In this work, calcination of limestone under steam-rich conditions simulating flue gas from a solid oxide fuel cell (SOFC), and subsequent ambient carbonation has been explored. Limestone was calcined under two steam concentration (21% and 35% vol) conditions in a 25 kWth pilot-scale bubbling fluidised bed (BFB), and then exposed to ambient air to evaluate DAC performance. Samples were characterised in order to quantify the hydration and carbonation conversions over time and, therefore, their DAC capacity. It was observed that steam reduces calcination time, confirming its catalytic effect, while the calcination temperature remained the same regardless of the steam composition at the same CO2 partial pressure. Moreover, increasing steam concentration during calcination affected the material performance and DAC capacity at ambient conditions positively. Therefore, these findings demonstrate that limestone calcined under typical SOFC afterburner exhaust conditions is suitable as a DAC sorbent

    Operation of a 25 kWth calcium looping pilot-plant with high oxygen concentrations in the calciner

    Get PDF
    Calcium looping (CaL) is a post-combustion CO2 capture technology that is suitable for retrofitting existing power plants. The CaL process uses limestone as a cheap and readily available CO2 sorbent. While the technology has been widely studied, there are a few available options that could be applied to make it more economically viable. One of these is to increase the oxygen concentration in the calciner to reduce or eliminate the amount of recycled gas (CO2, H2O and impurities); therefore, decreasing or removing the energy necessary to heat the recycled gas stream. Moreover, there is a resulting increase in the energy input due to the change in the combustion intensity; this energy is used to enable the endothermic calcination reaction to occur in the absence of recycled flue gases. This paper presents the operation and first results of a CaL pilot plant with 100% oxygen combustion of natural gas in the calciner. The gas coming into the carbonator was a simulated flue gas from a coal-fired power plant or cement industry. Several limestone particle size distributions are also tested to further explore the effect of this parameter on the overall performance of this operating mode. The configuration of the reactor system, the operating procedures, and the results are described in detail in this paper. The reactor showed good hydrodynamic stability and stable CO2 capture, with capture efficiencies of up to 70% with a gas mixture simulating the flue gas of a coal-fired power plant

    Direct air capture: process technology, techno-economic and socio-political challenges

    Get PDF
    Climate change mitigation scenarios that meet the Paris Agreement's objective of limiting global warming usually assume an important role for carbon dioxide removal and negative emissions technologies. Direct air capture (DAC) is a carbon dioxide removal technology which separates CO2 directly from the air using an engineered system. DAC can therefore be used alongside other negative emissions technologies, in principle, to mitigate CO2 emissions from a wide variety of sources, including those that are mobile and dispersed. The ultimate fate of the CO2, whether it is stored, reused, or utilised, along with choices related to the energy and materials inputs for a DAC process, dictates whether or not the overall process results in negative emissions. In recent years, DAC has undergone significant technical development, with commercial entities now operating in the market and prospects for significant upscale. Here we review the state-of-the-art to provide clear research challenges across the process technology, techno-economic and socio-political domains

    The extent of sorbent attrition and degradation of ethanol-treated CaO sorbents for CO2 capture within a fluidised bed reactor

    Get PDF
    The application of an ethanol pre-treatment step on biomass-templated calcium looping sorbents resulting in an improved pore structure for cyclic CO2 capture was investigated. Three ethanol solutions of varying concentrations were used with an improved pore and particle structure, and thermogravimetric analyser CO2 carrying capacity arising with the 70 vol% ethanol solution. The extent of attrition of these sorbents was tested within a fluidised bed reactor and compared against an untreated sorbent and a limestone base case. It found that despite the ethanol-treated sorbents displaying an admirable CO2 carrying capacity within the thermogravimetric analyser even under realistic post-combustion conditions, this was not translated equivalently in the fluidised bed. Attrition and elutriation of the biomass-templated sorbents was a significant issue and the ethanol pre-treatment step appeared to worsen the situation due to the roughened surface and mechanically weaker structure

    Attrition study of cement-supported biomass-activated calcium sorbents for CO2 capture

    Get PDF
    Enhanced CO2 capacity of biomass modified Ca-based sorbent has been reported recently, but undesired attrition resistance has also been observed. Cement was used as a support for biomass-activated calcium sorbent during the granulation process in this study, in order to improve the poor mechanical resistance. Attrition tests were carried out in an apparatus focused on impact breakage to evaluate how the biomass addition and cement support influence the particle strength during Ca-looping. Results showed biomass addition impaired the mechanical strength and cement support could improve it, which is reflected by the breakage probability and size change after impact of pellets experienced calcination and multiple calcination/carbonation cycles. Larger-sized particles suffered more intense attrition. The mechanical strength of sorbents declined significantly after higher temperature calcination but increased after carbonation. After multiple cycles, the mechanical strength of particles was greatly enhanced, but more cracks emerged. A semi-empirical formula for calculating average diameter after attrition based on Rittinger’s surface theory was developed. Observation on the morphology of particles indicated that particles with more porosity and cracks were more prone to breakage

    Effect of seawater, aluminate cement and alumina-rich spinel on pelletised CaO-based sorbents for calcium looping

    Get PDF
    Calcium looping (CaL) is considered as an emerging technology to reduce CO2 emissions in power generation systems and carbon-intensive industries. The main disadvantage of this technology is reactivity decay over carbonation/calcination cycles due to sintering. The main objective of this study was to evaluate the performance of novel sorbents for CaL. Three types of pelletized CaO-based sorbents for CO2 capture were developed by adding aluminate cement, aluminate cement with seawater, or alumina-rich spinel to calcined limestone. Different concentrations of seawater in deionized water solutions were tested: 1, 10, 25, and 50 vol %. All samples were tested in a thermogravimetric analyzer (TGA) under two different calcination conditions: mild (N2 atmosphere and 850 °C during calcination) and realistic (CO2 atmosphere and 950 °C during calcination). The samples were characterized using SEM and EDX. Aluminate cement CaO-based sorbents exhibited better performance in the TGA tests (25% conversion after 20 cycles achieved by limestone and 35% with aluminate cement CaO-based pellets, under mild conditions, and 11% conversion after 20 cycles with limestone compared to 15% utilizing aluminate cement CaO-based pellets, under realistic conditions). However, doping had a negative effect on the reactivity of the sorbent. Moreover, alumina rich spinel CaO-based sorbents showed the worst performance
    • …
    corecore