564 research outputs found

    SO_2-rock interaction on Io 2. Interaction with pure SO_2

    Get PDF
    A Na-S mineral on the surface of Io is required to be the source of the famous atomic cloud. SO_2 is a confirmed atmospheric and surface constituent, and because of the rapid volcanic resurfacing rate, the SO_2 is buried within the crust, where at least occasionally, over many cycles of burial and eruption, it must contact silicate materials at midlevel crustal temperatures. Surface interaction experiments were performed for a wide variety of silicate compositions showing that interaction products of these with SO_2 could be observed at 1123 K on laboratory timescales, even in the absence of external redox agents. Not all experiments produced deposits that could be studied by scanning electron microscopy; some required the greater sensitivity of photoelectron spectroscopy (XPS). Characterization of the alteration products by XPS showed that both oxidized and reduced sulfur species were formed, indicating that a disproportionation mechanism producing a sulfate and a reduced S species although smaller amounts of interaction leading to Na_2SO_3 formation cannot be ruled out. The reduced sulfur species is best explained as elemental S which was independently documented for two compositions. Scanning electron microscopy studies for those compositions where reaction was extensive enough to be observed showed (1) Na_2SO_4 for a soda-lime composition, (2) a mixed Na-Ca-sulfate liquid and CaSO_4 for AbAnDi and a chondrule glass composition, and (3) Fe-sulfate for a natural obsidian. Infrared spectroscopy for the soda-lime glass composition showed peaks best explained by Na_2SO_4. We conclude that SO_2 disproportionation as well as direct formation from SO_3 under oxidizing conditions can produce Na_2SO_4 by interaction of SO_2 with silicates on Io, but Ca and Fe sulfates may form preferentially in more basaltic compositions. As highly oxidizing conditions may be unlikely for Io, the disproportionation mechanism may be more competitive on Io than it is in laboratory experiments. Very low rates of Na_2SO_4 production are required to supply the Io atomic cloud, so the interaction processes can be very inefficient

    Bryostatin enhancement of memory in Hermissenda

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2006. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 210 (2006): 201-214.Bryostatin, a potent agonist of protein kinase C (PKC), when administered to Hermissenda was found to affect acquisition of an associative learning paradigm. Low bryostatin concentrations (0.1 to 0.5 ng/ml) enhanced memory acquisition, while concentrations higher than 1.0 ng/ml down-regulated the pathway and no recall of the associative training was exhibited. The extent of enhancement depended upon the conditioning regime used and the memory stage normally fostered by that regime. The effects of two training events (TEs) with paired conditioned and unconditioned stimuli, which standardly evoked only short-term memory (STM) lasting 7 min, were—when bryostatin was added concurrently—enhanced to a long-term memory (LTM) that lasted about 20 h. The effects of both 4- and 6-paired TEs (which by themselves did not generate LTM), were also enhanced by bryostatin to induce a consolidated memory (CM) that lasted at least 5 days. The standard positive 9-TE regime typically produced a CM lasting at least 6 days. Low concentrations of bryostatin (<0.5 ng/ml) elicited no demonstrable enhancement of CM from 9-TEs. However, animals exposed to bryostatin concentrations higher than 1.0 ng/ml exhibited no behavioral learning. Sharp-electrode intracellular recordings of type-B photoreceptors in the eyes from animals conditioned in vivo with bryostatin revealed changes in input resistance and an enhanced long-lasting depolarization (LLD) in response to light. Likewise, quantitative immunocytochemical measurements using an antibody specific for the PKC-activated Ca2+/GTP-binding protein calexcitin showed enhanced antibody labeling with bryostatin. Animals exposed to the PKC inhibitor bisindolylmaleimide-XI (Ro-32-0432) administered by immersion prior to 9-TE conditioning showed no training-induced changes with or without bryostatin exposure. However, if animals received bryostatin before Ro-32, the enhanced acquisition and demonstrated recall still occurred. Therefore, pathways responsible for the enhancement effects induced by bryostatin were putatively mediated by PKC. Overall, the data indicated that PKC activation occurred and calexcitin levels were raised during the acquisition phases of associative conditioning and memory initiation, and subsequently returned to baseline levels within 24 and 48 h, respectively. Therefore, the protracted recall measured by the testing regime used was probably due to bryostatin-induced changes during the acquisition and facilitated storage of memory, and not necessarily to enhanced recall of the stored memory when tested many days after training.AMK and HTE acknowledge the support of the Marine Biological Laboratory and Blanchette Rockefeller Neurosciences Institutes for these initial studies

    Gravitational radiation from compact binary systems: gravitational waveforms and energy loss to second post-Newtonian order

    Get PDF
    We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system of compact objects (neutron stars or black holes), accurate through second post-Newtonian order (O[(v/c)4]O[(Gm/rc2)2]O[(v/c)^4] \sim O[(Gm/rc^2)^2]) beyond the lowest-order quadrupole approximation. We cast the Einstein equations into the form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve it formally as a retarded integral over the past null cone of the chosen field point. The part of this integral that involves the matter sources and the near-zone gravitational field is evaluated in terms of multipole moments using standard techniques; the remainder of the retarded integral, extending over the radiation zone, is evaluated in a novel way. The result is a manifestly convergent and finite procedure for calculating gravitational radiation to arbitrary orders in a post-Newtonian expansion. Through second post-Newtonian order, the radiation is also shown to propagate toward the observer along true null rays of the asymptotically Schwarzschild spacetime, despite having been derived using flat spacetime wave equations. The method cures defects that plagued previous ``brute- force'' slow-motion approaches to the generation of gravitational radiation, and yields results that agree perfectly with those recently obtained by a mixed post-Minkowskian post-Newtonian method. We display explicit formulae for the gravitational waveform and the energy flux for two-body systems, both in arbitrary orbits and in circular orbits. In an appendix, we extend the formalism to bodies with finite spatial extent, and derive the spin corrections to the waveform and energy loss.Comment: 59 pages ReVTeX; Physical Review D, in press; figures available on request to [email protected]

    Integrated Economic and Climate Modeling

    Get PDF
    This survey examines the history and current practice in integrated assessment models (IAMs) of the economics of climate change. It begins with a review of the emerging problem of climate change. The next section provides a brief sketch of the rise of IAMs in the 1970s and beyond. The subsequent section is an extended exposition of one IAM, the DICE/RICE family of models. The purpose of this description is to provide readers an example of how such a model is developed and what the major components are. The final section discusses major important open questions that continue to occupy IAM modelers. These involve issues such as the discount rate, uncertainty, the social cost of carbon, the potential for catastrophic climate change, algorithms, and fat-tailed distributions. These issues are ones that pose both deep intellectual challenges as well as important policy implications for climate change and climate-change policy

    GT2006-90582 DESIGN AND TEST OF AN ASPIRATED COUNTER-ROTATING FAN

    Get PDF
    ABSTRACT The design and test of a two-stage, vaneless, aspirated counter-rotating fan is presented in this paper. The fan nominal design objectives were a pressure ratio of 3:1 and adiabatic efficiency of 87%. A pressure ratio of 2.9 at 89% efficiency was measured in the tests. The configuration consists of a counterswirl-producing inlet guide vane, followed by a high tip speed (1450 feet/sec) non-aspirated rotor, and a counter-rotating low speed (1150 feet/sec) aspirated rotor. The lower tip speed and lower solidity of the second rotor results in a blade loading above conventional limits, but enables a balance between the shock loss and viscous boundary layer loss, the latter of which can be controlled by aspiration. The aspiration slot on the second rotor suction surface extends from the hub up to 80% span, with a conventional tip clearance, and the bleed flow is discharged at the hub. The fan was tested in a short duration blowdown facility. Particular attention was given to the design of the instrumentation to obtain efficiency measurements within 0.5 percentage points. High response static pressure measurements were taken between the rotors and downstream of the fan to determine the stall behavior. Pressure ratio, mass flow, and efficiency on speedlines from 90% to 102% of the design speed are presented and discussed along with comparison to CFD predictions and design intent. The results presented here complement those presented earlier for two aspirated fan stages with tip shrouds, extending the validated design space for aspirated compressors to include designs with conventional unshrouded rotors and with inward removal of the aspirated flow

    Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley

    Get PDF
    A s the only social science that has access to data of sufficient duration to reveal long-term changes in patterned human behavior, archaeology traditionally has been concerned with describing and explaining how societies adapt and evolve in response to changing conditions. A major impediment to rigorous investigation in archaeology-the inability to conduct reproducible experiments-is one shared with certain other sciences, such as astronomy, geophysics, and paleontology. Computational modeling is providing a way around these difficulties. k Within anthropology and archaeology there has been a rapidly growing interest in so-called agent-based computational model

    Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley

    Get PDF
    A s the only social science that has access to data of sufficient duration to reveal long-term changes in patterned human behavior, archaeology traditionally has been concerned with describing and explaining how societies adapt and evolve in response to changing conditions. A major impediment to rigorous investigation in archaeology-the inability to conduct reproducible experiments-is one shared with certain other sciences, such as astronomy, geophysics, and paleontology. Computational modeling is providing a way around these difficulties. k Within anthropology and archaeology there has been a rapidly growing interest in so-called agent-based computational model
    corecore