2 research outputs found

    Utility of COVID-19 antigen testing in the emergency department

    Get PDF
    Background: The BinaxNOW coronavirus disease 2019 (COVID-19) Ag Card test (Abbott Diagnostics Scarborough, Inc.) is a lateral flow immunochromatographic point-of-care test for the qualitative detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein antigen. It provides results from nasal swabs in 15 minutes. Our purpose was to determine its sensitivity and specificity for a COVID-19 diagnosis. Methods: Eligible patients had symptoms of COVID-19 or suspected exposure. After consent, 2 nasal swabs were collected; 1 was tested using the Abbott RealTime SARS-CoV-2 (ie, the gold standard polymerase chain reaction test) and the second run on the BinaxNOW point of care platform by emergency department staff. Results: From July 20 to October 28, 2020, 767 patients were enrolled, of which 735 had evaluable samples. Their mean (SD) age was 46.8 (16.6) years, and 422 (57.4%) were women. A total of 623 (84.8%) patients had COVID-19 symptoms, most commonly shortness of breath (n = 404; 55.0%), cough (n = 314; 42.7%), and fever (n = 253; 34.4%). Although 460 (62.6%) had symptoms ≤7 days, the mean (SD) time since symptom onset was 8.1 (14.0) days. Positive tests occurred in 173 (23.5%) and 141 (19.2%) with the gold standard versus BinaxNOW test, respectively. Those with symptoms \u3e2 weeks had a positive test rate roughly half of those with earlier presentations. In patients with symptoms ≤7 days, the sensitivity, specificity, and negative and positive predictive values for the BinaxNOW test were 84.6%, 98.5%, 94.9%, and 95.2%, respectively. Conclusions: The BinaxNOW point-of-care test has good sensitivity and excellent specificity for the detection of COVID-19. We recommend using the BinasNOW for patients with symptoms up to 2 weeks

    Immunothrombotic Activity of Damage-Associated Molecular Patterns and Extracellular Vesicles in Secondary Organ Failure Induced by Trauma and Sterile Insults

    No full text
    Despite significant improvements in injury prevention and emergency response, injury-related death and morbidity continues to increase in the US and worldwide. Patients with trauma, invasive operations, anti-cancer treatment, and organ transplantation produce a host of danger signals and high levels of pro-inflammatory and pro-thrombotic mediators, such as damage-associated molecular patterns (DAMPs) and extracellular vesicles (EVs). DAMPs (e.g., nucleic acids, histone, high-mobility group box 1 protein, and S100) are molecules released from injured, stressed, or activated cells that act as endogenous ligands of innate immune receptors, whereas EVs (e.g., microparticle and exosome) are membranous vesicles budding off from plasma membranes and act as messengers between cells. DAMPs and EVs can stimulate multiple innate immune signaling pathways and coagulation cascades, and uncontrolled DAMP and EV production causes systemic inflammatory and thrombotic complications and secondary organ failure (SOF). Thus, DAMPs and EVs represent potential therapeutic targets and diagnostic biomarkers for SOF. High plasma levels of DAMPs and EVs have been positively correlated with mortality and morbidity of patients or animals with trauma or surgical insults. Blocking or neutralizing DAMPs using antibodies or small molecules has been demonstrated to ameliorate sepsis and SOF in animal models. Furthermore, a membrane immobilized with nucleic acid-binding polymers captured and removed multiple DAMPs and EVs from extracellular fluids, thereby preventing the onset of DAMP- and EV-induced inflammatory and thrombotic complications in vitro and in vivo. In this review, we will summarize the current state of knowledge of DAMPs, EVs, and SOF and discuss potential therapeutics and preventive intervention for organ failure secondary to trauma, surgery, anti-cancer therapy, and allogeneic transplantation
    corecore