4 research outputs found

    Enhanced weathering in the U.S. Corn Belt delivers carbon removal with agronomic benefits

    Full text link
    Enhanced weathering (EW) with crushed basalt on farmlands is a promising scalable atmospheric carbon dioxide removal strategy that urgently requires performance assessment with commercial farming practices. Our large-scale replicated EW field trial in the heart of the U.S. Corn Belt shows cumulative time-integrated carbon sequestration of 15.4 +/- 4.1 t CO2 ha-1 over four years, with additional emissions mitigation of ~0.1 - 0.4 t CO2,e ha-1 yr-1 for soil nitrous oxide, a potent long-lived greenhouse gas. Maize and soybean yields increased 12-16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals and global food and soil security

    Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits

    Get PDF
    Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha−1 y−1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha−1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security

    Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits

    No full text
    Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha-1 y-1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha-1. Maize and soybean yields increased significantly (P &lt; 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P &lt; 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security.</p
    corecore