28 research outputs found

    The Teggiolo zone: a key to the Helvetic-Penninic connection (stratigraphy and tectonics in the Val Bavona, Ticino, Central Alps)

    Get PDF
    The Teggiolo zone is the sedimentary cover of the Antigorio nappe, one of the lowest tectonic units of the Penninic Central Alps. Detailed mapping, stratigraphic and structural analyses, and comparisons with less metamorphic series in several well-studied domains of the Alps, provide a new stratigraphic interpretation. The Teggiolo zone is comprised of several sedimentary cycles, separated by erosive surfaces and large stratigraphic gaps, which cover the time span from Triassic to Eocene. At Mid-Jurassic times it appears as an uplifted, partially emergent block, marking the southern limit of the main Helvetic basin (the Limiting South-Helvetic Rise LSHR). The main mass of the Teggiolo calcschists, whose base truncates the Triassic-Jurassic cycles and can erode the Antigorio basement, consists of fine-grained clastic sediments analogous to the deep-water flyschoid deposits of Late Cretaceous to Eocene age in the North-Penninic (or Valais s.l.) basins. Thus the Antigorio-Teggiolo domain occupies a crucial paleogeographic position, on the boundary between the Helvetic and Penninic realms: from Triassic to Early Cretaceous its affinity is with the Helvetic; at the end of Cretaceous it is incorporated into the North-Penninic basins. An unexpected result is the discovery of the important role played by complex formations of wildflysch type at the top of the Teggiolo zone. They contain blocks of various sizes. According to their nature, three different associations are distinguished that have specific vertical and lateral distributions. These blocks give clues to the existence of territories that have disappeared from the present-day level of observation and impose constraints on the kinematics of early folding and embryonic nappe emplacement. Tectonics produced several phases of superimposed folds and schistosities, more in the metasediments than in the gneissic basement. Older deformations that predate the amplification of the frontal hinge of the nappe generated the dominant schistosity and the km-wide Vanzèla isoclinal fol

    Mimicking Alpine thrusts by passive deformation of synsedimentary normal faults: a record of the Jurassic extension of the European margin (Mont Fort nappe, Pennine Alps)

    Get PDF
    Abstract The Mont Fort nappe, former uppermost subunit of the Grand St-Bernard nappe system, is an independent tectonic unit with specific structural and stratigraphic characteristics (Middle Penninic, NW Italy and SW Switzerland). It consists in a Paleozoic basement, overlain by a thin, discontinuous cover of Triassic-Jurassic metasediments, mainly breccias, called the Evolène Series. The contact of this Series over the Mont Fort basement is debated: stratigraphic or tectonic? We present new observations that support the stratigraphic interpretation and consequently imply that the Evolène Series belongs to the Mont Fort nappe. We moreover show that the Mont Fort nappe was strongly affected by normal faulting during Jurassic. These faults went long unnoticed because Alpine orogenic deformation blurred the record. Alpine strain erased their original obliquity, causing confusion with an Alpine low-angle thrust. These Jurassic faults have been passively deformed during Alpine tectonics, without inversion or any other kind of reactivation. They behaved like passive markers of the Alpine strain. Detailed field observations reveal the link between observed faults and specific breccia accumulations. Areas where the Evolène Series is missing correspond to sectors where the fault scarps were exposed on the bottom of the sea but were too steep to keep the syn- to post-faulting sediments. The Mont Fort nappe thus represents an example of a distal rifted margin. The succession of synsedimentary extensional movements followed by orogenic shortening generated a situation where passively deformed normal faults mimic an orogenic thrust

    Continent-derived metasediments (Cimes Blanches and Frilihorn) within the ophiolites around Zermatt: relations with the Mischabel backfold and Mont Fort nappe (Pennine Alps)

    Get PDF
    The region surrounding Zermatt (SW Switzerland and NW Italy) displays some classic examples of imbrications between continental and oceanic units. In particular, the studied units, called Cimes Blanches and Frilihorn or Faisceau Vermiculaire, consist of a set of thin bands of continent-derived metasediments intercalated at different levels within the ocean-derived units. These bands are locally reduced to only one meter thick but can be traced for several tens to more than one hundred kilometers across the Pennine Alps. The mechanisms leading to such imbrications are a long-standing and still-debated question. Based on detailed mapping and structural analysis of key areas, we present new data on the structure and stratigraphy of the Faisceau Vermiculaire in the area surrounding Zermatt, with particular focus on the Täschalpen sector, where the Faisceau Vermiculaire is locally in contact with basement units. Our observations allow: (i) to confirm the presence of widespread breccias of probable Jurassic age in the Faisceau Vermiculaire; (ii) to interpret the contacts between the Faisceau Vermiculaire and the overlying non-ophiolitic Schistes Lustrés (Série Rousse) as stratigraphic; (iii) to show that the stratigraphy of the Faisceau Vermiculaire and associated Série Rousse contrasts strongly with the cover of the Siviez-Mischabel nappe and that these sequences originate from different paleogeographic domains (Prepiemont basin and Briançonnais platform respectively); (iv) to interpret as stratigraphic the contact of the Faisceau Vermiculaire and the Série Rousse with the basement forming the Alphubel anticline; the local unconformity is interpreted as the result of the activity of synsedimentary Jurassic normal paleofaults; (v) to highlight the trace of a major Jurassic normal fault, that should have marked an abrupt thinning of the paleomargin; it corresponds now to the contact between the Faisceau Vermiculaire (and associated Série Rousse) and the Siviez-Mischabel basement in the hinge of the Mischabel backfold. We propose a new tectonic scheme for the structure of the Faisceau Vermiculaire and adjacent units involving an early northward folding of the Faisceau Vermiculaire with the Série Rousse and the ophiolitic Schistes Lustrés of the Tsaté nappe, followed by major backfolding responsible for the southward emplacement of these units above the HP Zermatt- Saas and Monte Rosa nappes. Our study at regional scale shows that the group formed by the Alphubel basement, the Faisceau Vermiculaire and the Série Rousse share a tectonic position and stratigraphic sequences identical to those of the Mont Fort nappe, which outcrops on the other side of the Dent Blanche klippe. It leads to the proposition that this group constitutes the eastern extension of the Mont Fort nappe

    Les blocs erratiques propriété de la Société Vaudoise des Sciences Naturelles

    Get PDF
    Seize blocs erratiques, propriété de la Société Vaudoise des Sciences Naturelles, ont été étudiés des points de vue historique, pétrographique et lichénologique. Il est apparu que leur localisation était souvent imprécise et leur documentation lacunaire. Cette étude y remédie, fournissant également la synthèse des connaissances historiques existant sur ces blocs et nombre d’anecdotes. Les lichens y sont documentés pour la première fois, sauf pour la Pierre à Vermot, étudiée en 1925 par Charles Meylan, ce qui a permis une comparaison des espèces mentionnées. Seize espèces de lichens sont signalées pour la première fois dans le canton de Vaud. Le degré de protection de ces blocs est bon, néanmoins la nécessité de la conservation reste d’actualité vis-à-vis des menaces que sont les constructions de villas ou d’aménagements routiers ou le simple envahissement par la végétation qui menace alors les lichens poussant à leur surface. L’intérêt des blocs erratiques reste intact et diversifié, que ce soit pour de nouvelles études géologiques ou la découverte de nouvelles espèces de lichens

    The Maggia nappe: an extruding sheath fold basement nappe in the Lepontine gneiss dome of the Central Alps

    Get PDF
    The Lepontine gneiss dome represents a unique region of the Central Alps where Oligocene–Miocene amphibolite facies grade rocks and fold nappes of the deepest tectonic level of the Alpine orogenic belt are exposed in a tectonic window. The Cenozoic structures of the Maggia nappe reveals a giant tens of kilometre-scale tubular fold structure that cross-cut through the surrounding lower Penninic nappes from its root situated in the southern steep-belt of the Alps near Bellinzona. The Mesozoic sedimentary cover of the Maggia nappe is typical for the Helvetic stratigraphic domain. The age of formation of the lower Penninic fold-nappes by ductile detachment of the upper European crust during its underthrusting below the higher Penninic and Austroalpine orogenic lid and Adriatic indenter was estimated between 40 and 30 Ma. Maximal pressures of 8–9 kbars and temperatures of 600–700 °C were attended during and after the nappe emplacement some 30–22 Ma ago. The Maggia and surrounding nappes are crosscut by the isograds of the Barrovian regional metamorphism

    Structure, geometry and kinematics of the northern Adula nappe (Central Alps)

    Get PDF
    The eclogitic Adula nappe of the Central Alps (cantons Graubünden and Ticino, Switzerland) displays an exceptionally complex internal structure with the particularity of enclosing numerous slices of Mesozoic cover rocks (Internal Mesozoic) within the Palaeozoic gneiss basement. This study is principally based on detailed lithological and structural mapping of selected areas of the northern Adula nappe. Specific focus was placed on the Mesozoic slivers embedded in pre-Mesozoic basement (Internal Mesozoic). The most pervasive structures are related to the Zapport deformation phase that is responsible for the development of a fold-nappe and ubiquitous north-directed shear. Locally, the structures in the upper and frontal part of the nappe can be assigned to the older ductile Ursprung phase. These earlier structures are only compatible with top-to-S shear movement. The superposition of the Ursprung and Zapport phases is responsible for the north-dipping internal duplex-like structure and the sliced aspect of the Northern and Central Adula nappe. We conclude that the Adula nappe represents a major shear zone involving the entire nappe and responsible for the emplacement of the Lower Penninic sediments and the Middle Penninic nappes in the eastern part of the Lepontine Dome

    Basement lithostratigraphy of the Adula nappe: implications for Palaeozoic evolution and Alpine kinematics

    Get PDF
    The Adula nappe belongs to the Lower Penninic domain of the Central Swiss Alps. It consists mostly of pre-Triassic basement lithologies occurring as strongly folded and sheared gneisses of various types with mafic boudins. We propose a new lithostratigraphy for the northern Adula nappe basement that is supported by detailed field investigations, U-Pb zircon geochronology, and whole-rock geochemistry. The following units have been identified: Cambrian clastic metasediments with abundant carbonate lenses and minor bimodal magmatism (Salahorn Formation); Ordovician metapelites associated with amphibolite boudins with abundant eclogite relicts representing oceanic metabasalts (Trescolmen Formation); Ordovician peraluminous metagranites of calc-alkaline affinity ascribed to subduction-related magmatism (Garenstock Augengneiss); Ordovician metamorphic volcanic-sedimentary deposits (Heinisch Stafel Formation); Early Permian post-collisional granites recording only Alpine orogenic events (Zervreila orthogneiss). All basement lithologies except the Permian granites record a Variscan+Alpine polyorogenic metamorphic history. They document a complex Paleozoic geotectonic evolution consistent with the broader picture given by the pre-Mesozoic basement framework in the Alps. The internal consistency of the Adula basement lithologies and the stratigraphic coherence of the overlying Triassic sediments suggest that most tectonic contacts within the Adula nappe are pre-Alpine in age. Consequently, mélange models for the Tertiary emplacement of the Adula nappe are not consistent and must be rejected. The present-day structural complexity of the Adula nappe is the result of the intense Alpine ductile deformation of a pre-structured entity
    corecore