19 research outputs found
Membrane-Active Peptides and the Clustering of Anionic Lipids
AbstractThere is some overlap in the biological activities of cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs). We compared nine AMPs, seven CPPs, and a fusion peptide with regard to their ability to cluster anionic lipids in a mixture mimicking the cytoplasmic membrane of Gram-negative bacteria, as measured by differential scanning calorimetry. We also studied their bacteriostatic effect on several bacterial strains, and examined their conformational changes upon membrane binding using circular dichroism. A remarkable correlation was found between the net positive charge of the peptides and their capacity to induce anionic lipid clustering, which was independent of their secondary structure. Among the peptides studied, six AMPs and four CPPs were found to have strong anionic lipid clustering activity. These peptides also had bacteriostatic activity against several strains (particularly Gram-negative Escherichia coli) that are sensitive to lipid clustering agents. AMPs and CPPs that did not cluster anionic lipids were not toxic to E. coli. As shown previously for several types of AMPs, anionic lipid clustering likely contributes to the mechanism of antibacterial action of highly cationic CPPs. The same mechanism could explain the escape of CPPs from intracellular endosomes that are enriched with anionic lipids
Calorimetric detection of curvature strain in phospholipid bilayers
Phospholipids in biological membranes are arranged as bilayers. When constrained to pack into planar bilayers, certain phospholipids will form unstable structures as a consequence of their molecular shape and noncovalent bonding. This produces curvature strain which may provide energy for certain membrane processes. We demonstrate that an exothermic process associated with the relief of curvature strain can be detected calorimetrically. The enthalpy for the incorporation of a few percent lysophosphatidylcholine into large unilamellar vesicles of monomethyldioleoylphosphatidylethanolamine at pH 7.4 is exothermic but it is endothermic for stable bilayers such as this same lipid at pH 9 or dioleoylphosphatidylcholine at pH 7.4 or 9. The addition of lysophosphatidylcholine to monomethyldioleoylphosphatidylethanolamine at pH 7.4 is exothermic only for the addition of the first few percent of lysophosphatidylcholine and then it becomes endothermic. The size of the exothermic heat change is sensitive to changes in temperature, while the endothermic processes are relatively temperature-insensitive. The exothermic heat is also larger when 1 or 2 mol % of diolein is incorporated into vesicles of monomethyldioleoylphosphatidylethanolamine. These results are all consistent with the exothermic process corresponding to the relief of curvature strain in bilayers having a tendency to convert to the hexagonal phase. It provides a demonstration that considerable energy may be released upon the incorporation of certain molecules into membranes which have a low radius of spontaneous curvature
Membrane perturbing properties of sucrose polyesters
Sucrose polyester (SPE), in the form of sucrose octaesters and sucrose hexaesters of palmitic (16:0), stearic (18:0), oleic (18:1cis), and linoleic (18:2cis) acids, have many uses. Applications include: A non-caloric fat substitute, detoxification agent, and oral contrast agent for human abdominal (MRI) magnetic resonance imaging. However, it has been shown that the ingestion of SPE was shown to generate a depletion of physiologically important lipidic vitamins and other lipophilic molecules. In order to better understand, at the molecular level, the type of interaction between SPE and lipid membrane, we have, first synthesized different type of labelled and non-labelled SPEs. Secondly, we have studied the effect of SPEs on multilamellar dispersions of dielaidoylphosphatidylethanolamine (DEPE) and dipalmitoylphosphocholine (DPPC) as a function of temperature, SPE composition and concentration. The effects of SPEs were studied by differential scanning calorimetry (DSC), X-ray diffraction, 2H and 31P NMR spectroscopy. At low concentration (<1 mol%) all of the SPEs lowered the bilayer to the inverted hexagonal phase transition temperature of DEPE and induced the formation of a cubic phase in a composition dependent manner. At the same low concentration, SPEs in DPPC induce the formation of a non-bilayer phase as seen by 31P NMR. Order parameter measurements of DPPC-d62/SPE mixtures show that the SPE effect on the DPPC monolayer thickness is dependent on the SPE, concentration, chains length and saturation level. At higher concentration (≥10 mol%) SPE are very potent DEPE bilayer to HII phase transition promoters, although at that concentration the SPE have lost the ability to form cubic phases. SPEs have profound effects on the phase behaviour of model membrane systems, and may be important to consider when developing current and potential industrial and medical applications