1,743 research outputs found
Investigation of How IT Leadership Impacts IT-Business Alignment through Shared Domain Knowledge and Knowledge Integration
Using full range leadership model and the knowledge-based view of organizations, we develop and test a model linking Information Technology (IT) leadership to IT-business alignment. Specifically, we examine how transformational IT leadership behaviors influence IT-business alignment through mechanisms that develop shared domain knowledge between IT and business personnel and mechanisms that integrate specialized IT and business knowledge. We also examine how the former mechanisms influence the efficiency of the latter. This study contributes to the existing literature by suggesting transformational leadership and mechanisms related to knowledge integration as key factors in IT-business alignment
Limitations of portfolio diversification through fat tails of the return Distributions: Some empirical evidence
This study investigates the level of risk due to fat tails of the return distribution and the changes of tail fatness (TF) through portfolio diversification. TF is not eliminated through portfolio diversification, and, interestingly, the positive tail has declining fatness until a certain level is reached, while the negative tail has rising fatness. This indicates that fat tails are highly relevant to common factors on systematic risk and that the relevance of common factors is higher for the negative tail compared to the positive tail. In the portfolio diversification effect, the declining fatness of the positive tail further reduces risk, but the rising fatness of the negative tail does not contribute to this effect. The asymmetry between the fatness of the positive and negative tails in the return distribution corresponds to the asymmetry of the trade-off relationship between loss avoidance and profit sacrifice that is expected as a consequence of portfolio diversification. Investors use portfolio diversification to reduce their risk of suffering high losses, but following this strategy means sacrificing high-profit potential. Our study provides empirical confirmation for the practical limitation of portfolio diversification and explains why investors with diversified portfolios suffer high losses from market crashes. An examination of the Northeast Asian stock markets of China, Japan, Korea, and Taiwan show identical results
Localization of Two-dimensional Electron Gas in LaAlO3/SrTiO3 Heterostructures
We report strong localization of 2D electron gas in LaAlO3 / SrTiO3 epitaxial
thin-film heterostructures grown on (LaAlO3)0.3-(Sr2AlTaO3)0.7 substrates by
using pulsed laser deposition with in-situ reflection high-energy electron
diffraction. Using longitudinal and transverse magnetotransport measurements,
we have determined that disorder at the interface influences the conduction
behavior, and that increasing the carrier concentration by growing at lower
oxygen partial pressure changes the conduction from strongly localized at low
carrier concentration to metallic at higher carrier concentration, with
indications of weak localization. We interpret this behavior in terms of a
changing occupation of Ti 3d bands near the interface, each with a different
spatial extent and susceptibility to localization by disorder, and differences
in carrier confinement due to misfit strain and point defects.Comment: 12 pages, 4 figure
Magnetotransport and the upper critical magnetic field in MgB2
Magnetotransport measurements are presented on polycrystalline MgB2 samples.
The resistive upper critical magnetic field reveals a temperature dependence
with a positive curvature from Tc = 39.3 K down to about 20 K, then changes to
a slightly negative curvature reaching 25 T at 1.5 K. The 25- Tesla upper
critical field is much higher than what is known so far on polycrystals of MgB2
but it is in agreement with recent data obtained on epitaxial MgB2 films. The
deviation of Bc2(T) from standard BCS might be due to the proposed two-gap
superconductivity in this compound. The observed quadratic normal-state
magnetoresistance with validity of Kohler's rule can be ascribed to classical
trajectory effects in the low-field limit.Comment: 6 pages, incl. 3 figure
Resistance spikes and domain wall loops in Ising quantum Hall ferromagnets
We explain the recent observation of resistance spikes and hysteretic
transport properties in Ising quantum Hall ferromagnets in terms of the unique
physics of their domain walls. Self-consistent RPA/Hartree-Fock theory is
applied to microscopically determine properties of the ground state and
domain-wall excitations. In these systems domain wall loops support
one-dimensional electron systems with an effective mass comparable to the bare
electron mass and may carry charge. Our theory is able to account
quantitatively for the experimental Ising critical temperature and to explain
characteristics of the resistive hysteresis loops.Comment: 4 pages, 3 figure
Non-Fermi liquid behavior and scaling of low frequency suppression in optical conductivity spectra of CaRuO
Optical conductivity spectra of paramagnetic CaRuO are
investigated at various temperatures. At T=10 K, it shows a non-Fermi liquid
behavior of , similar to the case
of a ferromagnet SrRuO. As the temperature () is increased, on the other
hand, in the low frequency region is progressively
suppressed, deviating from the 1/{\omega}^{\frac 12%}-dependence.
Interestingly, the suppression of is found to scale with
at all temperatures. The origin of the scaling
behavior coupled with the non-Fermi liquid behavior is discussed.Comment: 4 pages, 3 figure
Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects
We investigated a switchable ferroelectric diode effect and its physical
mechanism in Pt/BiFeO3/SrRuO3 thin-film capacitors. Our results of electrical
measurements support that, near the Pt/BiFeO3 interface of as-grown samples, a
defective layer (possibly, an oxygen-vacancy-rich layer) becomes formed and
disturbs carrier injection. We therefore used an electrical training process to
obtain ferroelectric control of the diode polarity where, by changing the
polarization direction using an external bias, we could switch the transport
characteristics between forward and reverse diodes. Our system is characterized
with a rectangular polarization hysteresis loop, with which we confirmed that
the diode polarity switching occurred at the ferroelectric coercive voltage.
Moreover, we observed a simultaneous switching of the diode polarity and the
associated photovoltaic response dependent on the ferroelectric domain
configurations. Our detailed study suggests that the polarization charge can
affect the Schottky barrier at the ferroelectric/metal interfaces, resulting in
a modulation of the interfacial carrier injection. The amount of
polarization-modulated carrier injection can affect the transition voltage
value at which a space-charge-limited bulk current-voltage (J-V) behavior is
changed from Ohmic (i.e., J ~ V) to nonlinear (i.e., J ~ V^n with n \geq 2).
This combination of bulk conduction and polarization-modulated carrier
injection explains the detailed physical mechanism underlying the switchable
diode effect in ferroelectric capacitors.Comment: Accepted for publication in Phys. Rev.
Twitter-based analysis of the dynamics of collective attention to political parties
Large-scale data from social media have a significant potential to describe
complex phenomena in real world and to anticipate collective behaviors such as
information spreading and social trends. One specific case of study is
represented by the collective attention to the action of political parties. Not
surprisingly, researchers and stakeholders tried to correlate parties' presence
on social media with their performances in elections. Despite the many efforts,
results are still inconclusive since this kind of data is often very noisy and
significant signals could be covered by (largely unknown) statistical
fluctuations. In this paper we consider the number of tweets (tweet volume) of
a party as a proxy of collective attention to the party, identify the dynamics
of the volume, and show that this quantity has some information on the
elections outcome. We find that the distribution of the tweet volume for each
party follows a log-normal distribution with a positive autocorrelation of the
volume over short terms, which indicates the volume has large fluctuations of
the log-normal distribution yet with a short-term tendency. Furthermore, by
measuring the ratio of two consecutive daily tweet volumes, we find that the
evolution of the daily volume of a party can be described by means of a
geometric Brownian motion (i.e., the logarithm of the volume moves randomly
with a trend). Finally, we determine the optimal period of averaging tweet
volume for reducing fluctuations and extracting short-term tendencies. We
conclude that the tweet volume is a good indicator of parties' success in the
elections when considered over an optimal time window. Our study identifies the
statistical nature of collective attention to political issues and sheds light
on how to model the dynamics of collective attention in social media.Comment: 16 pages, 7 figures, 3 tables. Published in PLoS ON
- …