60 research outputs found
Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage
DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members
DNA Unwinding by Escherichia coli DNA Helicase I (TraI) Provides Evidence for a Processive Monomeric Molecular Motor
The F plasmid TraI protein (DNA helicase I) plays an essential role in conjugative DNA transfer as both a transesterase and a helicase. Previous work has shown that the 192-kDa TraI protein is a highly processive helicase, catalytically separating >850 bp under steady-state conditions. In this report, we examine the kinetic mechanism describing DNA unwinding of TraI. The kinetic step size of TraI was measured under both single turnover and pre-steady-state conditions. The resulting kinetic step-size estimate was approximately 6-8 bp step(-1). TraI can separate double-stranded DNA at a rate of approximately 1100 bp s(-1), similar to the measured unwinding rate of the RecBCD helicase, and appears to dissociate very slowly from the 3' terminus following translocation and strand-separation events. Analyses of pre-steady-state burst amplitudes indicate that TraI can function as a monomer, similar to the bacteriophage T4 helicase, Dda. However, unlike Dda, TraI is a highly processive monomeric helicase, making it unique among the DNA helicases characterized thus far
Mechanism of Nucleic Acid Unwinding by SARS-CoV Helicase
The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5′→3′ polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ∼280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis
A Facile Semisynthesis and Evaluation of Garcinoic Acid and Its Analogs for the Inhibition of Human DNA Polymerase β
Garcinoic acid has been identified as an inhibitor of DNA polymerase β (pol β). However, no structure-activity relationship (SAR) studies of garcinoic acid as a pol β inhibitor have been conducted, in part due to the lack of an efficient synthetic method for this natural product and its analogs. We developed an efficient semi-synthetic method for garcinoic acid and its analogs by starting from natural product δ-tocotrienol. Our preliminary SAR studies provided a valuable insight into future discovery of garcinoic acid-based pol β inhibitors
Metal-ion dependence of the active-site conformation of the translesion DNA polymerase Dpo4 from Sulfolobus solfataricus
Structures of binary and ternary Dpo4 DNA polymerase complexes crystallized in the presence of Mg2+ have been determined. Comparisons with the corresponding Ca2+-form structures revealed subtle changes in the active-site geometry
Structure-Function Relationships in Miscoding by Sulfolobus solfataricus DNA Polymerase Dpo4: GUANINE N2,N2-DIMETHYL SUBSTITUTION PRODUCES INACTIVE AND MISCODING POLYMERASE COMPLEXES*
Previous work has shown that Y-family DNA polymerases tolerate large DNA adducts, but a substantial decrease in catalytic efficiency and fidelity occurs during bypass of N2,N2-dimethyl (Me2)-substituted guanine (N2,N2-Me2G), in contrast to a single methyl substitution. Therefore, it is unclear why the addition of two methyl groups is so disruptive. The presence of N2,N2-Me2G lowered the catalytic efficiency of the model enzyme Sulfolobus solfataricus Dpo4 16,000-fold. Dpo4 inserted dNTPs almost at random during bypass of N2,N2-Me2G, and much of the enzyme was kinetically trapped by an inactive ternary complex when N2,N2-Me2G was present, as judged by a reduced burst amplitude (5% of total enzyme) and kinetic modeling. One crystal structure of Dpo4 with a primer having a 3′-terminal dideoxycytosine (Cdd) opposite template N2,N2-Me2G in a post-insertion position showed Cdd folded back into the minor groove, as a catalytically incompetent complex. A second crystal had two unique orientations for the primer terminal Cdd as follows: (i) flipped into the minor groove and (ii) a long pairing with N2,N2-Me2G in which one hydrogen bond exists between the O-2 atom of Cdd and the N-1 atom of N2,N2-Me2G, with a second water-mediated hydrogen bond between the N-3 atom of Cdd and the O-6 atom of N2,N2-Me2G. A crystal structure of Dpo4 with dTTP opposite template N2,N2-Me2G revealed a wobble orientation. Collectively, these results explain, in a detailed manner, the basis for the reduced efficiency and fidelity of Dpo4-catalyzed bypass of N2,N2-Me2G compared with mono-substituted N2-alkyl G adducts
- …