25 research outputs found
The human parasite Loa loa in cytokine and cytokine receptor gene knock out BALB/c mice: survival, development and localization
<p>Abstract</p> <p>Background</p> <p>Immunological mechanisms involved in the survival and development of human filarial species in the vertebrate host are poorly known due to the lack of suitable experimental models. In order to understand the role of cytokines in the survival and development of filarial larvae in the vertebrate host, we infected different strains of BALB/c mice deficient in a number of cytokine or cytokine receptor genes with <it>Loa loa</it>. The survival and development of larvae were monitored.</p> <p>Methods</p> <p>BALB/c mice genetically deficient in IL-4R, IFN-γ, IFN-γ/IL-5, IL-5, and IL-4R/IL-5 cytokine or cytokine receptor genes were infected with a human strain of <it>L. loa </it>and necropsies were performed at different time intervals up to 70 days post infection to monitor the survival and development of <it>L. loa </it>larvae. The larvae were teased out of the skin, muscles, peritoneal and pleural cavities, heart and lung tissues. The length and width of the recovered larvae were measured to assess their growth.</p> <p>Results</p> <p>In mice deficient for IL-4R, IFN-γ, IFN-γ/IL-5, IL-5 and IL-4R/IL-5, the larvae survived up to 5, 20, 40, 50 and 70 days respectively. Worms recovered 70 days post infection in IL-4R/IL-5 DKO mice were young adults and measured 10.12 mm in length and 0.1 mm in width. Overall, 47% of larvae were recovered from subcutaneous tissues, 40% from muscles, 6% from the peritoneal cavity and 4% from the pleural cavity, lungs and heart.</p> <p>Conclusion</p> <p><it>L. loa </it>exhibits a differential survival and development in different strains of cytokine or cytokine receptor gene knockout mice with IL-4R and IL-5 playing critical roles in the host resistance to <it>L. loa </it>infection. The knock out BALB/c mouse therefore represents a useful tool to explore the key effectors of adaptive immunity involved in the killing of the <it>L. loa </it>parasite in a mammal host.</p
Cross-Reactivity of Filariais ICT Cards in Areas of Contrasting Endemicity of Loa loa and Mansonella perstans in Cameroon: Implications for Shrinking of the Lymphatic Filariasis Map in the Central African Region
Background
Immunochromatographic card test (ICT) is a tool to map the distribution of Wuchereria bancrofti. In areas highly endemic for loaisis in DRC and Cameroon, a relationship has been envisaged between high L. loa microfilaria (Mf) loads and ICT positivity. However, similar associations have not been demonstrated from other areas with contrasting levels of L. loa endemicity. This study investigated the cross-reactivity of ICT when mapping lymphatic filariasis (LF) in areas with contrasting endemicity levels of loiasis and mansonellosis in Cameroon
Detecting and staging podoconiosis cases in North West Cameroon: positive predictive value of clinical screening of patients by community health workers and researchers
Background
The suitability of using clinical assessment to identify patients with podoconiosis in endemic communities has previously been demonstrated. In this study, we explored the feasibility and accuracy of using Community Health Implementers (CHIs) for the large scale clinical screening of the population for podoconiosis in North-west Cameroon.
Methods
Before a regional podoconiosis mapping, 193 CHIs and 50 health personnel selected from 6 health districts were trained in the clinical diagnosis of the disease. After training, CHIs undertook community screening for podoconiosis patients under health personnel supervision. Identified cases were later re-examined by a research team with experience in the clinical identification of podoconiosis.
Results
Cases were identified by CHIs with an overall positive predictive value (PPV) of 48.5% [34.1–70%]. They were more accurate in detecting advanced stages of the disease compared to early stages; OR 2.07, 95% CI = 1.15–3.73, p = 0.015 for all advanced stages). Accuracy of detecting cases showed statistically significant differences among health districts (χ2 = 25.30, p = 0.0001).
Conclusion
Podoconiosis being a stigmatized disease, the use of CHIs who are familiar to the community appears appropriate for identifying cases through clinical diagnosis. However, to improve their effectiveness and accuracy, more training, supervision and support are required. More emphasis must be given in identifying early clinical stages and in health districts with relatively lower PPVs
Recommended from our members
Mapping lymphatic filariasis in Loa loa endemic health districts naïve for ivermectin mass administration and situated in the forested zone of Cameroon
Background
The control of lymphatic filariasis (LF) caused by Wuchereria bancrofti in the Central African Region has been hampered by the presence of Loa loa due to severe adverse events that arise in the treatment with ivermectin. The immunochromatographic test (ICT) cards used for mapping LF demonstrated cross-reactivity with L. loa and posed the problem of delineating the LF map. To verify LF endemicity in forest areas of Cameroon where mass drug administration (MDA) has not been ongoing, we used the recently developed strategy that combined serology, microscopy and molecular techniques.
Methods
This study was carried out in 124 communities in 31 health districts (HDs) where L. loa is present. At least 125 persons per site were screened. Diurnal blood samples were investigated for circulating filarial antigen (CFA) by FTS and for L. loa microfilariae (mf) using TBF. FTS positive individuals were further subjected to night blood collection for detecting W. bancrofti. qPCR was used to detect DNA of the parasites.
Results
Overall, 14,446 individuals took part in this study, 233 participants tested positive with FTS in 29 HDs, with positivity rates ranging from 0.0% to 8.2%. No W. bancrofti mf was found in the night blood of any individuals but L. loa mf were found in both day and night blood of participants who were FTS positive. Also, qPCR revealed that no W. bancrofti but L.loa DNA was found with dry bloodspot. Positive FTS results were strongly associated with high L. loa mf load. Similarly, a strong positive association was observed between FTS positivity and L loa prevalence.
Conclusions
Using a combination of parasitological and molecular tools, we were unable to find evidence of W. bancrofti presence in the 31 HDs, but L. loa instead. Therefore, LF is not endemic and LF MDA is not required in these districts
Ivermectin treatment of Loa loa hyper-microfilaraemic baboons (Papio anubis): Assessment of microfilarial loads, haematological and biochemical parameters and histopathological changes following treatment.
Individuals with high intensity of Loa loa are at risk of developing serious adverse events (SAEs) post treatment with ivermectin. These SAEs have remained unclear and a programmatic impediment to the advancement of community directed treatment with ivermectin. The pathogenesis of these SAEs following ivermectin has never been investigated experimentally. The Loa/baboon (Papio anubis) model can be used to investigate the pathogenesis of Loa-associated encephalopathy following ivermectin treatment in humans. 12 baboons with microfilarial loads > 8,000mf/mL of blood were randomised into four groups: Group 1 (control group receiving no drug), Group 2 receiving ivermectin (IVM) alone, Group 3 receiving ivermectin plus aspirin (IVM + ASA), and Group 4 receiving ivermectin plus prednisone (IVM + PSE). Blood samples collected before treatment and at Day 5, 7 or 10 post treatment, were analysed for parasitological, hematological and biochemical parameters using standard techniques. Clinical monitoring of animals for side effects took place every 6 hours post treatment until autopsy. At autopsy free fluids and a large number of standard organs were collected, examined and tissues fixed in 10% buffered formalin and processed for standard haematoxylin-eosin staining and specific immunocytochemical staining. Mf counts dropped significantly (p0.05). All animals became withdrawn 48 hours after IVM administration. All treated animals recorded clinical manifestations including rashes, itching, diarrhoea, conjunctival haemorrhages, lymph node enlargement, pinkish ears, swollen face and restlessness; one animal died 5 hours after IVM administration. Macroscopic changes in post-mortem tissues observed comprised haemorrhages in the brain, lungs, heart, which seen in all groups given ivermectin but not in the untreated animals. Microscopically, the major cellular changes seen, which were present in all the ivermectin treated animals included microfilariae in varying degrees of degeneration in small vessels. These were frequently associated with fibrin deposition, endothelial changes including damage to the integrity of the blood vessel and the presence of extravascular erythrocytes (haemorrhages). There was an increased presence of eosinophils and other chronic inflammatory types in certain tissues and organs, often in large numbers and associated with microfilarial destruction. Highly vascularized organs like the brain, heart, lungs and kidneys were observed to have more microfilariae in tissue sections. The number of mf seen in the brain and kidneys of animals administered IVM alone tripled that of control animals. Co-administration of IVM + PSE caused a greater increase in mf in the brain and kidneys while the reverse was noticed with the co-administration of IVM + ASA. The treatment of Loa hyper-microfilaraemic individuals with ivermectin produces a clinical spectrum that parallels that seen in Loa hyper-microfilaraemic humans treated with ivermectin. The utilization of this experimental model can contribute to the improved management of the adverse responses in humans
Mapping the geographical distribution of podoconiosis in Cameroon using parasitological, serological, and clinical evidence to exclude other causes of lymphedema
Background
Podoconiosis is a non-filarial elephantiasis, which causes massive swelling of the lower legs. It was identified as a neglected tropical disease by WHO in 2011. Understanding of the geographical distribution of the disease is incomplete. As part of a global mapping of podoconiosis, this study was conducted in Cameroon to map the distribution of the disease. This mapping work will help to generate data on the geographical distribution of podoconiosis in Cameroon and contribute to the global atlas of podoconiosis.
Methods
We used a multi‐stage sampling design with stratification of the country by environmental risk of podoconiosis. We sampled 76 villages from 40 health districts from the ten Regions of Cameroon. All individuals of 15-years old or older in the village were surveyed house-to-house and screened for lymphedema. A clinical algorithm was used to reliably diagnose podoconiosis, excluding filarial-associated lymphedema. Individuals with lymphoedema were tested for circulating Wuchereria bancrofti antigen and specific IgG4 in the field using the Alere Filariasis Test Strips (FTS) test and the Standard Diagnostics (SD) BIOLINE lymphatic filariasis IgG4 test (Wb123) respectively, in addition to thick blood films. Presence of DNA specific to W.bancrofti was checked on night blood using a qPCR technique.
Principal Findings
Overall, 10,178 individuals from 4,603 households participated in the study. In total, 83 individuals with lymphedema were identified. Of the 83 individuals with lymphedema, two were found to be FTS positive and all were negative using the Wb123 test. No microfilaria of W. bancrofti were found in the night blood of any individual with clinical lymphedema. None were found to be positive for W. bancrofti using qPCR. Of the two FTS positive cases, one was positive for Mansonella perstans DNA, while the other harbored Loa loa microfilaria. Overall, 52 people with podoconiosis were identified after applying the clinical algorithm. The overall prevalence of podoconiosis was found to be 0.5% (95% [confidence interval] CI; 0.4-0.7). At least one case of podoconiosis was found in every region of Cameroon except the two surveyed villages in Adamawa. Of the 40 health districts surveyed, 17 districts had no cases of podoconiosis; in 15 districts, mean prevalence was between 0.2% and 1.0%; and in the remaining eight, mean prevalence was between 1.2% and 2.7%.
Conclusions
Our investigation has demonstrated low prevalence but almost nationwide distribution of podoconiosis in Cameroon. Designing a podoconiosis control program is a vital next step. A health system response to the burden of podoconiosis is important, through case surveillance and morbidity management services
Situation analysis of parasitological and entomological indices of onchocerciasis transmission in three drainage basins of the rain forest of South West Cameroon after a decade of ivermectin treatment
BACKGROUND: Community-Directed Treatment with Ivermectin (CDTI) is the main strategy adopted by the African Programme for Onchocerciasis control (APOC). Recent reports from onchocerciasis endemic areas of savannah zones have demonstrated the feasibility of disease elimination through CDTI. Such information is lacking in rain forest zones. In this study, we investigated the parasitological and entomological indices of onchocerciasis transmission in three drainage basins in the rain forest area of Cameroon [after over a decade of CDTI]. River basins differed in terms of river number and their flow rates; and were characterized by high pre-control prevalence rates (60-98%). METHODS: Nodule palpation and skin snipping were carried out in the study communities to determine the nodule rates, microfilarial prevalences and intensity. Simulium flies were caught at capture points and dissected to determine the biting, parous, infection and infective rates and the transmission potential. RESULTS: The highest mean microfilaria (mf) prevalence was recorded in the Meme (52.7%), followed by Mungo (41.0%) and Manyu drainage basin (33.0%). The same trend was seen with nodule prevalence between the drainage basins. Twenty-three (23/39) communities (among which 13 in the Meme) still had mf prevalence above 40%. All the communities surveyed had community microfilarial loads (CMFL) below 10 mf/skin snip (ss). The infection was more intense in the Mungo and Meme. The intensity of infection was still high in younger individuals and children less than 10 years of age. Transmission potentials as high as 1211.7 infective larvae/person/month were found in some of the study communities. Entomological indices followed the same trend as the parasitological indices in the three river basins with the Meme having the highest values. CONCLUSION: When compared with pre-control data, results of the present study show that after over a decade of CDTI, the burden of onchocerciasis has reduced. However, transmission is still going on in this study site where loiasis and onchocerciasis are co-endemic and where ecological factors strongly favour the onchocerciasis transmission. The possible reasons for this persistent and differential transmission despite over a decade of control efforts using ivermectin are discussed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-0817-2) contains supplementary material, which is available to authorized users
Relationship between oral declaration on adherence to ivermectin treatment and parasitological indicators of onchocerciasis in an area of persistent transmission despite a decade of mass drug administration in Cameroon
BACKGROUND: Onchocerciasis control for years has been based on mass drug administration (MDA) with ivermectin (IVM). Adherence to IVM repeated treatment has recently been shown to be a confounding factor for onchocerciasis elimination precisely in rain forest areas where transmission continues and Loa loa co-exists with Onchocerca volvulus. In this study, participants’ oral declarations were used as proxy to determine the relationship between adherence to IVM treatment and parasitological indicators of onchocerciasis in the rain forest area of Cameroon with more than a decade of MDA. METHODS: Participants were recruited based on their IVM intake profile with the aid of a semi-structured questionnaire. Parasitological examinations (skin sniping and nodule palpation) were done on eligible candidates. Parasitological indicators were calculated and correlated to IVM intake profile. RESULTS: Of 2,364 people examined, 15.5 % had never taken IVM. The majority (40.4 %) had taken the drug 1–3 times while only 18 % had taken ≥ 7 times. Mf and nodule prevalence rates were still high at 47 %, 95 % CI [44.9–49.0 %] and 36.4 %, 95 % CI [34.4–38.3 %] respectively. There was a treatment-dependent reduction in microfilaria prevalence (r(s) =−0.986, P = 0.01) and intensity (r(s) =−0.96, P = 0.01). The highest mf prevalence (59.7 %) was found in the zero treatment group and the lowest (33.9 %) in the ≥ 7 times treatment group (OR = 2.8; 95 % CI [2.09–3.74]; P < 0.001). Adults with ≥ 7 times IVM intake were 2.99 times more likely to have individuals with no microfilaria compared to the zero treatment group (OR = 2.99; 95 % CI [2.19–4.08], P < 0.0001). There was no clear correlation between treatment and nodule prevalence and intensity. CONCLUSION: Adherence to ivermectin treatment is not adequate in this rain forest area where L. loa co-exists with O. volvulus. The prevalence and intensity of onchocerciasis remained high in individuals with zero IVM intake after more than a decade of MDA. Our findings show that using parasitological indicators, reduction in prevalence is IVM intake-dependent and that participants’ oral declaration of treatment adherence could be relied upon for impact studies. The findings are discussed in the context of challenges for the elimination of onchocerciasis in this rain forest area
Spatial modelling and prediction of Loa loa risk: decision making under uncertainty.
Health decision-makers working in Africa often need to act for millions of people over large geographical areas on little and uncertain information. Spatial statistical modelling and Bayesian inference have now been used to quantify the uncertainty in the predictions of a regional, environmental risk map for Loa loa (a map that is currently being used as an essential decision tool by the African Programme for Onchocerciasis Control). The methodology allows the expression of the probability that, given the data, a particular location does or does not exceed a predefined high-risk threshold for which a change in strategy for the delivery of the antihelmintic ivermectin is required