32 research outputs found

    Towards Robust Text Retrieval with Progressive Learning

    Full text link
    Retrieval augmentation has become an effective solution to empower large language models (LLMs) with external and verified knowledge sources from the database, which overcomes the limitations and hallucinations of LLMs in handling up-to-date and domain-specific information. However, existing embedding models for text retrieval usually have three non-negligible limitations. First, the number and diversity of samples in a batch are too restricted to supervise the modeling of textual nuances at scale. Second, the high proportional noise are detrimental to the semantic correctness and consistency of embeddings. Third, the equal treatment to easy and difficult samples would cause sub-optimum convergence of embeddings with poorer generalization. In this paper, we propose the PEG, a progressively learned embeddings for robust text retrieval. Specifically, we increase the training in-batch negative samples to 80,000, and for each query, we extracted five hard negatives. Concurrently, we incorporated a progressive learning mechanism, enabling the model to dynamically modulate its attention to the samples throughout the entire training process. Additionally, PEG is trained on more than 100 million data, encompassing a wide range of domains (e.g., finance, medicine, and tourism) and covering various tasks (e.g., question-answering, machine reading comprehension, and similarity matching). Extensive experiments conducted on C-MTEB and DuReader demonstrate that PEG surpasses state-of-the-art embeddings in retrieving true positives, highlighting its significant potential for applications in LLMs. Our model is publicly available at https://huggingface.co/TownsWu/PEG

    Radio pulsar B0950++08: Radiation in Magnetosphere and Sparks above Surface

    Full text link
    The nearby radio pulsar B0950++08 with full duty cycle is targeted by the Five-hundred-meter Aperture Spherical radio Telescope (FAST, 110 minutes allocated), via adopting polarization calibration on two ways of baseline determination, in order to understand its magnetospheric radiation geometry as well as the polar cap sparking. % The radiation of the main pulse could not be informative of magnetic field line planes due to its low linear polarization (<10%<10 \%) and the position angle jumps, and the polarization position angle in the pulse longitudes whose linear fractions are larger than ∼30% \sim 30 \% is thus fitted in the classical rotating vector model (RVM). % The best RVM fit indicates that the inclination angle, α\alpha, and the impact angle, β\beta, of this pulsar are 100.5∘100.5^{\circ} and −33.2∘-33.2^{\circ}, respectively, suggesting that the radio emission comes from two poles. % Polar cap sparking in the vacuum gap model, either the annular gap or the core gap, is therefore investigated in this RVM geometry, resulting in a high-altitude magnetospheric emission at heights from ∼0.25RLC\sim 0.25R_{\rm LC} to ∼0.56RLC\sim 0.56R_{\rm LC}, with RLCR_{\rm LC} the light cylinder radius. % It is evident that both sparking points of the main and inter pulses are located mainly away from the magnetic pole, that is meaningful in the physics of pulsar surface and is even relevant to pulsar's inner structure.Comment: 13 pages, 9 figures, submitte

    X-Ray Flares of Gamma-Ray Bursts: Quakes of Solid Quark Stars?

    Full text link
    We propose a star-quake model to understand X-ray flares of both long and short Gamma-ray bursts (GRBs) in a solid quark star regime. Two kinds of central engines for GRBs are available if pulsar-like stars are actually (solid) quark stars, i.e., the SNE-type GRBs and the SGR-type GRBs. It is found that a quark star could be solidified about 10^3 to 10^6 s later after its birth if the critical temperature of phase transition is a few MeV, and then a new source of free energy (i.e., elastic and gravitational ones, rather than rotational or magnetic energy) could be possible to power GRB X-ray flares.Comment: 8 pages, latex file. 2 figures. To appear in Science in China Series

    Genomic Analyses Reveal Mutational Signatures and Frequently Altered Genes in Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets

    The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

    No full text
    Abstract Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z = 12.78, P < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z = 7.62, P < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z = 11.55, P < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi2 = 7.20, P < 0.05), intervention duration (chi2 = 12.18, P < 0.01), subject area (chi2 = 13.36, P < 0.05), group size (chi2 = 8.77, P < 0.05), and learning scaffold (chi2 = 9.03, P < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving
    corecore