358 research outputs found
Bulk, surface and corner free energy series for the chromatic polynomial on the square and triangular lattices
We present an efficient algorithm for computing the partition function of the
q-colouring problem (chromatic polynomial) on regular two-dimensional lattice
strips. Our construction involves writing the transfer matrix as a product of
sparse matrices, each of dimension ~ 3^m, where m is the number of lattice
spacings across the strip. As a specific application, we obtain the large-q
series of the bulk, surface and corner free energies of the chromatic
polynomial. This extends the existing series for the square lattice by 32
terms, to order q^{-79}. On the triangular lattice, we verify Baxter's
analytical expression for the bulk free energy (to order q^{-40}), and we are
able to conjecture exact product formulae for the surface and corner free
energies.Comment: 17 pages. Version 2: added 4 further term to the serie
Osculating and neighbour-avoiding polygons on the square lattice
We study two simple modifications of self-avoiding polygons. Osculating
polygons are a super-set in which we allow the perimeter of the polygon to
touch at a vertex. Neighbour-avoiding polygons are only allowed to have nearest
neighbour vertices provided these are joined by the associated edge and thus
form a sub-set of self-avoiding polygons. We use the finite lattice method to
count the number of osculating polygons and neighbour-avoiding polygons on the
square lattice. We also calculate their radius of gyration and the first
area-weighted moment. Analysis of the series confirms exact predictions for the
critical exponents and the universality of various amplitude combinations. For
both cases we have found exact solutions for the number of convex and
almost-convex polygons.Comment: 14 pages, 5 figure
Size and area of square lattice polygons
We use the finite lattice method to calculate the radius of gyration, the
first and second area-weighted moments of self-avoiding polygons on the square
lattice. The series have been calculated for polygons up to perimeter 82.
Analysis of the series yields high accuracy estimates confirming theoretical
predictions for the value of the size exponent, , and certain
universal amplitude combinations. Furthermore, a detailed analysis of the
asymptotic form of the series coefficients provide the firmest evidence to date
for the existence of a correction-to-scaling exponent, .Comment: 12 pages 3 figure
New Algorithm of the Finite Lattice Method for the High-temperature Expansion of the Ising Model in Three Dimensions
We propose a new algorithm of the finite lattice method to generate the
high-temperature series for the Ising model in three dimensions. It enables us
to extend the series for the free energy of the simple cubic lattice from the
previous series of 26th order to 46th order in the inverse temperature. The
obtained series give the estimate of the critical exponent for the specific
heat in high precision.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter
Large- expansion of the specific heat for the two-dimensional -state Potts model
We have calculated the large- expansion for the specific heat at the phase
transition point in the two-dimensional -state Potts model to the 23rd order
in using the finite lattice method. The obtained series allows us
to give highly convergent estimates of the specific heat for on the first
order transition point. The result confirm us the correctness of the conjecture
by Bhattacharya et al. on the asymptotic behavior of the specific heat for .Comment: 7 pages, LaTeX, 2 postscript figure
Series studies of the Potts model. II: Bulk series for the square lattice
The finite lattice method of series expansion has been used to extend
low-temperature series for the partition function, order parameter and
susceptibility of the -state Potts model to order (i.e. ),
, , , , , , and
for , 3, 4, \dots 9 and 10 respectively. These series are used
to test techniques designed to distinguish first-order transitions from
continuous transitions. New numerical values are also obtained for the
-state Potts model with .Comment: 32 pages, incl. 3 figures, incl. 3 figure
Test of Guttmann and Enting's conjecture in the eight-vertex model
We investigate the analyticity property of the partially resummed series
expansion(PRSE) of the partition function for the eight-vertex model.
Developing a graphical technique, we have obtained a first few terms of the
PRSE and found that these terms have a pole only at one point in the complex
plane of the coupling constant. This result supports the conjecture proposed by
Guttmann and Enting concerning the ``solvability'' in statistical mechanical
lattice models.Comment: 15 pages, 3 figures, RevTe
Study of the Potts Model on the Honeycomb and Triangular Lattices: Low-Temperature Series and Partition Function Zeros
We present and analyze low-temperature series and complex-temperature
partition function zeros for the -state Potts model with on the
honeycomb lattice and on the triangular lattice. A discussion is given
as to how the locations of the singularities obtained from the series analysis
correlate with the complex-temperature phase boundary. Extending our earlier
work, we include a similar discussion for the Potts model with on the
honeycomb lattice and with on the kagom\'e lattice.Comment: 33 pages, Latex, 9 encapsulated postscript figures, J. Phys. A, in
pres
Punctured polygons and polyominoes on the square lattice
We use the finite lattice method to count the number of punctured staircase
and self-avoiding polygons with up to three holes on the square lattice. New or
radically extended series have been derived for both the perimeter and area
generating functions. We show that the critical point is unchanged by a finite
number of punctures, and that the critical exponent increases by a fixed amount
for each puncture. The increase is 1.5 per puncture when enumerating by
perimeter and 1.0 when enumerating by area. A refined estimate of the
connective constant for polygons by area is given. A similar set of results is
obtained for finitely punctured polyominoes. The exponent increase is proved to
be 1.0 per puncture for polyominoes.Comment: 36 pages, 11 figure
- …