399 research outputs found

    Kondo Effect in a Many-Electron Quantum Ring

    Full text link
    The Kondo effect is investigated in a many-electron quantum ring as a function of magnetic field. For fields applied perpendicular to the plane of the ring a modulation of the Kondo effect with the Aharonov-Bohm period is observed. This effect is discussed in terms of the energy spectrum of the ring and the parametrically changing tunnel coupling. In addition, we use gate voltages to modify the ground-state spin of the ring. The observed splitting of the Kondo-related zero-bias anomaly in this configuration is tuned with an in-plane magnetic field.Comment: 4 pages, 4 figure

    Singlet-Triplet Transition Tuned by Asymmetric Gate Voltages in a Quantum Ring

    Full text link
    Wavefunction and interaction effects in the addition spectrum of a Coulomb blockaded many electron quantum ring are investigated as a function of asymmetrically applied gate voltages and magnetic field. Hartree and exchange contributions to the interaction are quantitatively evaluated at a crossing between states extended around the ring and states which are more localized in one arm of the ring. A gate tunable singlet-triplet transition of the two uppermost levels of this many electron ring is identified at zero magnetic field.Comment: 4 page

    Towards electron transport measurements in chemically modified graphene: The effect of a solvent

    Full text link
    Chemical functionalization of graphene modifies the local electron density of the carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on the electron transport. Latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, the isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look on the influence of solvents used for chemical modification in order to understand their influence

    In-plane gate single-electron transistor in Ga[Al]As fabricated by scanning probe lithography

    Full text link
    A single-electron transistor has been realized in a Ga[Al]As heterostructure by oxidizing lines in the GaAs cap layer with an atomic force microscope. The oxide lines define the boundaries of the quantum dot, the in-plane gate electrodes, and the contacts of the dot to source and drain. Both the number of electrons in the dot as well as its coupling to the leads can be tuned with an additional, homogeneous top gate electrode. Pronounced Coulomb blockade oscillations are observed as a function of voltages applied to different gates. We find that, for positive top-gate voltages, the lithographic pattern is transferred with high accuracy to the electron gas. Furthermore, the dot shape does not change significantly when in-plane voltages are tuned.Comment: 4 pages, 3 figure

    Optical polarization of localized hole spins in p-doped quantum wells

    Full text link
    The initialization of spin polarization in localized hole states is investigated using time-resolved Kerr rotation. We find that the sign of the polarization depends on the magnetic field, and the power and the wavelength of the circularly polarized pump pulse. An analysis of the spin dynamics and the spin-initialization process shows that two mechanisms are responsible for spin polarization with opposite sign: The difference of the g factor between the localized holes and the trions, as well as the capturing process of dark excitons by the localized hole states.Comment: 4 pages, 2 figure

    Transmission Phase Through Two Quantum Dots Embedded in a Four-Terminal Quantum Ring

    Full text link
    We use the Aharonov-Bohm effect in a four-terminal ring based on a Ga[Al]As heterostructure for the measurement of the relative transmission phase. In each of the two interfering paths we induce a quantum dot. The number of electrons in the two dots can be controlled independently. The transmission phase is measured as electrons are added to or taken away from the individual quantum dots.Comment: 3 pages, 4 figure

    Transport properties of quantum dots with hard walls

    Full text link
    Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation with an atomic force microscope. This technique, in combination with top gate voltages, allows us to generate steep walls at the confining edges and small lateral depletion lengths. The confinement is characterized by low-temperature magnetotransport measurements, from which the dots' energy spectrum is reconstructed. We find that in small dots, the addition spectrum can qualitatively be described within a Fock-Darwin model. For a quantitative analysis, however, a hard-wall confinement has to be considered. In large dots, the energy level spectrum deviates even qualitatively from a Fock-Darwin model. The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure

    Transport properties of quantum dots with hard walls

    Full text link
    Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation with an atomic force microscope. This technique, in combination with top gate voltages, allows us to generate steep walls at the confining edges and small lateral depletion lengths. The confinement is characterized by low-temperature magnetotransport measurements, from which the dots' energy spectrum is reconstructed. We find that in small dots, the addition spectrum can qualitatively be described within a Fock-Darwin model. For a quantitative analysis, however, a hard-wall confinement has to be considered. In large dots, the energy level spectrum deviates even qualitatively from a Fock-Darwin model. The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure

    Density dependence of microwave induced magneto-resistance oscillations in a two-dimensional electron gas

    Full text link
    We have measured the magneto-resistance of a two-dimensional electron gas (2DEG) under continuous microwave irradiation as a function of electron density and mobility tuned with a metallic top-gate. In the entire range of density and mobility we have investigated, we observe microwave induced oscillations of large amplitude that are B-periodic. These B-periodic oscillations are reminiscent of the ones reported by Kukushkin \textit{et al}[1] and which were attributed to the presence of edge-magneto-plasmons. We have found that the B-periodicity does not increase linearly with the density in our sample but shows a plateau in the range (2.4-3) 10^{11}\rm cm^{-2} $. In this regime, the phase of the B-periodic oscillations is found to shift continuously by two periods.Comment: 5 pages, 4 figure
    corecore