19 research outputs found
Gamma Rays from Clusters and Groups of Galaxies: Cosmic Rays versus Dark Matter
Clusters of galaxies have not yet been detected at gamma-ray frequencies;
however, the recently launched Fermi Gamma-ray Space Telescope, formerly known
as GLAST, could provide the first detections in the near future. Clusters are
expected to emit gamma rays as a result of (1) a population of high-energy
primary and re-accelerated secondary cosmic rays (CR) fueled by structure
formation and merger shocks, active galactic nuclei and supernovae, and (2)
particle dark matter (DM) annihilation. In this paper, we ask the question of
whether the Fermi telescope will be able to discriminate between the two
emission processes. We present data-driven predictions for a large X-ray flux
limited sample of galaxy clusters and groups. We point out that the gamma ray
signals from CR and DM can be comparable. In particular, we find that poor
clusters and groups are the systems predicted to have the highest DM to CR
emission at gamma-ray energies. Based on detailed Fermi simulations, we study
observational handles that might enable us to distinguish the two emission
mechanisms, including the gamma-ray spectra, the spatial distribution of the
signal and the associated multi-wavelength emissions. We also propose optimal
hardness ratios, which will help to understand the nature of the gamma-ray
emission. Our study indicates that gamma rays from DM annihilation with a high
particle mass can be distinguished from a CR spectrum even for fairly faint
sources. Discriminating a CR spectrum from a light DM particle will be instead
much more difficult, and will require long observations and/or a bright source.
While the gamma-ray emission from our simulated clusters is extended,
determining the spatial distribution with Fermi will be a challenging task
requiring an optimal control of the backgrounds.Comment: revised to match resubmitted version, 35 pages, 16 figures: results
unchanged, some discussion added and unnecessary text and figures remove
Determining the Cosmic Distance Scale from Interferometric Measurements of the Sunyaev-Zel'dovich Effect
We determine the distances to 18 galaxy clusters with redshifts ranging from
z~0.14 to z~0.78 from a maximum likelihood joint analysis of 30 GHz
interferometric Sunyaev-Zel'dovich effect (SZE) and X-ray observations. We
model the intracluster medium (ICM) using a spherical isothermal beta model. We
quantify the statistical and systematic uncertainties inherent to these direct
distance measurements, and we determine constraints on the Hubble parameter for
three different cosmologies. These distances imply a Hubble constant of 60 (+4,
-4) (+13, -18) km s-1 Mpc-1 for an Omega_M = 0.3, Omega_Lambda = 0.7 cosmology,
where the uncertainties correspond to statistical followed by systematic at 68%
confidence. With a sample of 18 clusters, systematic uncertainties clearly
dominate. The systematics are observationally approachable and will be
addressed in the coming years through the current generation of X-ray
satellites (Chandra & XMM-Newton) and radio observatories (OVRO, BIMA, & VLA).
Analysis of high redshift clusters detected in future SZE and X-ray surveys
will allow a determination of the geometry of the universe from SZE determined
distances.Comment: ApJ Submitted; 40 pages, 9 figures (fig 3 B&W for size constraint),
13 tables, uses emulateapj5 styl
Shower Power: Isolating the Prompt Atmospheric Neutrino Flux Using Electron Neutrinos
At high energies, the very steep decrease of the conventional atmospheric
component of the neutrino spectrum should allow the emergence of even small and
isotropic components of the total spectrum, indicative of new physics, provided
that they are less steeply decreasing, as generically expected. One candidate
is the prompt atmospheric neutrino flux, a probe of cosmic ray composition in
the region of the knee as well as small- QCD, below the reach of collider
experiments. A second is the diffuse extragalactic background due to distant
and unresolved AGNs and GRBs, a key test of the nature of the highest-energy
sources in the universe. Separating these new physics components from the
conventional atmospheric neutrino flux, as well as from each other, will be
very challenging. We show that the charged-current {\it electron} neutrino
"shower" channel should be particularly effective for isolating the prompt
atmospheric neutrino flux, and that it is more generally an important
complement to the usually-considered charged-current {\it muon} neutrino
"track" channel. These conclusions remain true even for the low prompt
atmospheric neutrino flux predicted in a realistic cosmic ray scenario with
heavy and varying composition across the knee (Candia and Roulet, 2003 JCAP
{\bf 0309}, 005). We also improve the corresponding calculation of the neutrino
flux induced by cosmic ray collisions with the interstellar medium.Comment: 15 pages, 4 figures. Minor modifications, version accepted for
publication in JCA
A phylogenetic classification of the worldâs tropical forests
Knowledge about the biogeographic affinities of the worldâs tropical forests helps to better understand regional differences in forest structure, diversity, composition and dynamics. Such understanding will enable anticipation of region specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present the first classification of the worldâs tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (1) Indo-Pacific, (2) Subtropical, (3) African, (4) American, and (5) Dry forests. Our results do not support the traditional Neo- versus Palaeo-tropical forest division, but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar and India. Additionally, a northern hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern hemisphere forests
The global abundance of tree palms
Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., â„10 cm diameter at breast height) abundance relative to coâoccurring nonâpalm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of longâterm climate stability. Lifeâform diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many nonâtree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of aboveâground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests
Phylogenetic classification of the world's tropical forests
Knowledge about the biogeographic affinities of the worldâs tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the worldâs tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p