12 research outputs found
Estudio genómico de la incongruencia de género mediante la tecnología de microarrays
Programa Oficial de Doutoramento en Química Ambiental e Fundamental. 5031V01[Resumo]
A incongruencia de xénero defínese no CIE-11 (World Health Organization, 2018) como
unha marcada e persistente discordancia entre o xénero experimentado e o sexo asignado
ao nacer. A súa orixe é complexa e multifactorial.
Obxectivo: O obxectivo principal desta investigación centrouse na análise de diferentes
polimorfismos xenéticos nunha poboación transxénero en contraste cunha poboación
cisxénero con similares características. Na primeira parte analizáronse catro polimorfismos
localizados no promotor do xene do receptor de estróxenos alfa (ESR1). Na segunda parte
analizáronse 247 polimorfismos situados nos cofactores NCoA-1, NCoA-2, NCoA-3,
NCoA-4, NCoA-5 e p300-CREBBP dada a íntima relación existente entre os esteroides e
os coactivadores de esteroides. Finalmente, na terceira parte desta investigación
analizáronse 242 polimorfismos situados no ADN mitocondrial dada a ausencia total de
investigación relacionada ca incongruencia de xénero.
Material e métodos: En todos os polimorfismos analizáronse as frecuencias alélicas e
xenotípicas mediante o test de χ2, comparando as poboacións cis- e transxénero respecto a
o seu sexo xenético. A forza de asociación de cada polimorfismo coa incongruencia de
xénero mediuse mediante regresión loxística binaria. Respecto ao único polimorfismo de
repetición (C2), analizouse o número de repeticións en cada poboación coa U de Mann-
Whitney. O desequilibrio de ligamento e a estimación das frecuencias haplotípicas foron
tamén analizados.
Resultados: Respecto ao xene ESR1 atopouse que a media de repeticións para o
polimorfismo C2 era máis baixa na poboación de homes transxénero que na poboación
cisxénero. Os xenotipos S/S e S/L atopábanse sobrerrepresentados na poboación de homes
transxénero (P<0,012 e P<0,003 respectivamente). Tamén se atopou unha
sobrerrepresentación do xenotipo A/A para o polimorfismo C4 na poboación de homes
transxénero (P<0,017), mentres que o xenotipo A/G estaba sobrerrepresentado na
poboación cisxénero (P<0,009].
En canto ao estudo dos cofactores, atopáronse diferenzas significativas en once
polimorfismos localizados en NCoA-1, NCoA-2, e p300-CREBBP, sendo os coactivadores
NCoA-2 e p300-CREBBP, os que presentaron maior número de polimorfismos con
significación estatística (5/64 e 2/9 respectivamente). Ademais, os polimorfismos P2
(localizado en NCoA-1), P9 e P10 (localizados en p300-CREBBP) mostraron diferente
distribución xenotípica dependendo da covariable sexo.
Respecto aos polimorfismos mitocondriales, atopáronse diferenzas significativas (P<0,05)
en 26 polimorfismos. Só un deles pasou a corrección de Bonferroni (P<0,0002), estando
ligado aos xenes MT-ND4 e MT-ND5 (OR=17,33).
Conclusión: Os xenes ESR1, NCoA-1, NCoA-2, p300-CREBBP, MT-ND4 e MT-ND5
pódense considerar xenes implicados na base biolóxica da incongruencia de xénero.[Resumen]
La marcada y persistente discordancia entre el género experimentado y el sexo asignado al
nacer se define en el CIE-11 (World Health Organization, 2018) como incongruencia de
género. Su origen es complejo y multifactorial.
Objetivo: El objetivo principal de esta investigación se centró en el análisis de diferentes
polimorfismos genéticos en una población transgénero en contraste con una población
cisgénero de similares características. En la primera parte del estudio se analizaron cuatro
polimorfismos localizados en el promotor del gen del receptor de estrógenos alfa (ESR1).
En la segunda parte se analizaron 247 polimorfismos situados en las moléculas
coactivadoras de esteroides NCoA-1, NCoA-2, NCoA-3, NCoA-4, NCoA-5 y p300-
CREBBP dada la íntima relación existente entre los esteroides y los coactivadores de
esteroides. Finalmente se analizaron 242 polimorfismos situados en el ADN mitocondrial,
dada la ausencia total de investigación relacionada con la incongruencia de género.
Material y métodos: En todos los polimorfismos se analizaron las frecuencias alélicas y
genotípicas mediante el test de χ2, comparando las poblaciones cis- y transgénero según el
sexo genético. La fuerza de asociación de cada polimorfismo con la incongruencia de
género se midió mediante regresión logística binaria. Respecto al único polimorfismo de
repetición (C2), se midió el número de repeticiones en cada población y se analizó
mediante la U de Mann-Whitney. También se realizaron análisis de desequilibrio de
ligamiento y estimación de las frecuencias haplotípicas.
Resultados: Respecto al gen ESR1 se encontró que la media de repeticiones para el
polimorfismo C2 era más baja en la población de hombres transgénero que en la población
cisgénero. Los genotipos S/S y S/L estaban sobrerrepresentados en la población de
hombres transgénero (P<0,012 y P<0,003 respectivamente). También se encontró una
sobrerrepresentación del genotipo A/A para el polimorfismo C4 en la población de
hombres transgénero (P<0,017), mientras que el genotipo A/G estaba sobrerrepresentado
en la población cisgénero (P<0,009].
En cuanto al estudio de los cofactores, se encontraron diferencias significativas en once
polimorfismos localizados en NCoA-1, NCoA-2, y p300-CREBBP. Siendo los
coactivadores NCoA-2 y p300-CREBBP los que presentaron mayor número de
polimorfismos con significación estadística (5/64 y 2/9 respectivamente). Además, los
polimorfismos P2 (localizado en NCoA-1), P9 y P10 (localizados en p300-CREBBP)
mostraron diferente distribución genotípica dependiente de la covariable sexo.
Respecto a los polimorfismos mitocondriales, se encontraron diferencias significativas
(P<0,05) en 26 polimorfismos; sólo uno de ellos pasó la corrección de Bonferroni
(P<0,0002), estando ligado a los genes MT-ND4 y MT-ND5 (OR=17,33).
Conclusión: Los genes ESR1, NCoA-1, NCoA-2, p300-CREBBP, MT-ND4 y MT-ND5 se
pueden considerar genes implicados en la incongruencia de género.[Abstract]
Gender incongruence is defined in the ICD-11 (World Health Organization, 2018) as a
marked and persistent disagreement between the experienced gender and the assigned natal
sex. Its origin is complex and multifactorial.
Objective: The main objective was focused on the analysis of different DNA
polymorphisms in a transgender population in contrast to a cisgender population. The first
part of the investigation involved the analysis of four polymorphisms that are encoded in
the promoter of the estrogen receptor alpha (ESR1) gene. The second part focused on the
study of 247 polymorphisms situated in the coactivator molecules NCoA-1, NCoA-2,
NCoA-3, NCoA-4, NCoA-5 and p300-CREBBP given the close relationship between
steroids and coactivators of steroids. Finally, 242 polymorphisms located in the
mitochondrial DNA and their relationship with gender incongruence were analyzed, given
the total absence of research related to this topic.
Material and methods: In all polymorphisms, allele and genotypic frequencies were
analyzed using the χ2 test, comparing the cis- and transgender populations with respect to
their natal sex. The strength of association of each polymorphism with gender
incongruence was measured using binary logistic regression. Regarding the only repeated
polymorphism analyzed (C2), the number of repetitions was analyzed with the Mann-
Whitney U test. Linkage disequilibrium and haplotype frequency analyses were also
performed.
Results: Regarding the ESR1 gene, it was found that the mean of repetitions for the C2
polymorphism was smaller in the transgender men population than in the cisgender
population. The S/S and S/L genotypes were overrepresented in the transgender men
population (P<0.012 and P<0.003 respectively). An overrepresentation of the A/A
genotype was also found for the C4 polymorphism in the transgender men population
(P<0.017), while the A/G was overrepresented in the cisgender population (P<0.009].
Regarding the study of cofactor molecules, significant differences were found in eleven
polymorphisms located in NCoA-1, NCoA-2, and p300-CREBBP. Coactivators NCoA-2
and p300-CREBBP being those with the highest number of polymorphisms with statistical
significance (5/64 and 2/9 respectively). Furthermore, only polymorphisms P2 (located in
NCoA-1), P9 and P10 (located in p300-CREBBP) showed different genotypic distribution
depending on the covariate “sex”.
Regarding mitochondrial polymorphisms, significant differences (P<0.05) were found in
26 polymorphisms; only one of them passed the Bonferroni correction (P<0.0002), being
linked to the MT-ND4 and MT-ND5 genes, with an OR=17.33.
Conclusion: The ESR1, NCoA-1, NCoA-2, p300-CREBBP, MT-ND4 and MT-ND5 genes
can be considered to be involved in gender incongruenc
Analysis of Four Polymorphisms Located at the Promoter of the Estrogen Receptor Alpha ESR1 Gene in a Population With Gender Incongruence
[Abstract] Introduction: Gender incongruence defines a state in which individuals feel discrepancy between the sex assigned at birth and their gender. Some of these people make a social transition from male to female (transwomen) or from female to male (trans men). By contrast, the word cisgender describes a person whose gender identity is consistent with their sex assigned at birth.
Aim: To analyze the implication of the estrogen receptor a gene (ESR1) in the genetic basis of gender incongruence.
Main Outcome Measures: Polymorphisms rs9478245, rs3138774, rs2234693, rs9340799.
Method: We carried out the analysis of 4 polymorphisms located at the promoter of the ESR1 gene (C1 ¼ rs9478245, C2 ¼ rs3138774, C3 ¼ rs2234693, and C4 ¼ rs9340799) in a population of 273 trans
women, 226 trans men, and 537 cis gender controls. For SNP polymorphisms, the allele and genotype frequencies were analyzed by c2 test. The strength of the SNP associations with gender incongruence was measured by binary logistic regression. For the STR polymorphism, the mean number of repeats were analyzed by the ManneWhitney U test. Measurement of linkage disequilibrium and haplotype frequencies were also performed.
Results: The C2 median repeats were shorter in the trans men population. Genotypes S/S and S/L for the C2 polymorphism were overrepresented in the trans men group (P ¼ .012 and P ¼ .003 respectively). We also found overtransmission of the A/A genotype (C4) in the trans men population (P ¼ .017), while the A/G genotype (C4) was subrepresented (P ¼ .009]. The analyzed polymorphisms were in linkage disequilibrium. In the trans men population, the T(C1)-L(C2)-C(C3)-A(C4) haplotype was overrepresented (P ¼ .019) while the T(C1)-L(C2)-C(C3)-G(C4) was subrepresented (P ¼ .005).
Conclusion: The ESR1 is associated with gender incongruence in the trans men populationThis work was supported by grants: ED431B 019/02 (EP), PGC2018-094919-B-C21 (AG), PGC2018-094919-B-C22 (RF), and FPU 15/02558 (JCC)Xunta de Galicia; ED431B 019/0
Implications of the Estrogen Receptor Coactivators SRC1 and SRC2 in the Biological Basis of Gender Incongruence
[Abstract] Introduction
Brain sexual differentiation results from the effects of sex steroids on the developing brain. The presumptive route for brain masculinization is the direct induction of gene expression via activation of the estrogen receptors α and β and the androgen receptor through their binding to ligands and to coactivators, regulating the transcription of multiple genes in a cascade effect.
Aim
To analyze the implication of the estrogen receptor coactivators SRC-1, SRC-2, and SRC-3 in the genetic basis of gender incongruence.
Main Outcome Measures
Analysis of 157 polymorphisms located at the estrogen receptor coactivators SRC-1, SRC-2, and SRC-3, in 94 transgender versus 94 cisgender individuals.
Method
Using SNPStats software, the allele and genotype frequencies were analyzed by χ2, the strength of the association was measured by binary logistic regression, estimating the odds ratio for each genotype. Measurements of linkage disequilibrium and haplotype frequencies were also performed.
Results
We found significant differences at level P < .05 in 8 polymorphisms that correspond to 5.09% of the total. Three were located in SRC-1 and 5 in SRC-2. The odds ratio analysis showed significant differences at level P < .05 for multiple patterns of inheritance. The polymorphisms analyzed were in linkage disequilibrium. The SRC-1 haplotypes CGA and CGG (global haplotype association P < .009) and the SRC-2 haplotypes GGTAA and GGTAG (global haplotype association P < .005) were overrepresented in the transgender population.
Conclusion
The coactivators SRC-1 and SRC-2 could be considered as candidates for increasing the list of potential genes for gender incongruence. Ramírez KDV, Fernández R, Delgado-Zayas E, et al. Implications of the Estrogen Receptor Coactivators SRC1 and SRC2 in the Biological Basis of Gender Incongruence. Sex Med 2021;9:100368.This work was supported by grants: ED431B 019/02 (EP), PGC2018-094919-B-C21 (AG), PGC2018-094919-B-C22 (RF and EP
Adolescence view from epigenetics
[Resumen] La adolescencia es el proceso en donde se produce la transformación de niño en adulto, por tanto,
es un período de transición crítico e intenso, que tiene características peculiares como la
inestabilidad y el desequilibrio y en donde se demuestra el desafío y la rebeldía del adolescente a
los adultos. La genética cumple un rol importante en esta transición, sin embargo, la combinación
de factores ambientales también puede alterar el funcionamiento de los genes sin modificar la
secuencia de ADN, es por esta razón que en el siglo XX se introduce el término de epigenética
como una rama de estudio que se encarga de demostrar que no todos los genes se manifiestan del
mismo modo, ni permanecen estables a lo largo del tiempo. En todas las etapas de la vida, en
especial en la adolescencia, que es una etapa muy vulnerable del ser humano, las modificaciones
epigenéticas pueden determinar la conducta, modular el estrés, ocasionar que en el adolescente se
altere alguna función en el sistema inmune, así como la neurobiología de la cognición y el
aprendizaje. El objetivo de este trabajo es hacer una revisión de los últimos conocimientos en
investigación de cómo la epigenética influye en el adolescente.[Abstract] Adolescence is the process in which the transformation from child to adult takes place; therefore,
it is a period of critical and intense transition, which has peculiar characteristics such as
instability and imbalance and where the adolescent demonstrate challenge and rebellion for the
adults. Genetics plays an important role in this transition, however, the combination of
environmental factors can also alter the functioning of genes without modifying the DNA
sequence, for this reason in the 20th century the epigenetics is introduced as a field of study, that
demonstrate that not all genes are manifested in the same way, nor remain stable over time. In all
stages of life, especially in adolescence, which is a very vulnerable stage of the persons,
epigenetic modifications can determine behaviour, modulate stress, moreover, can alter some
function in the immune system, as well as the neurobiology of cognition and learning in the
adolescence. The aim of this work is to review the latest studies of how epigenetics influences
adolescents
Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen
[Abstract]
Background
Brain sexual differentiation is a process that results from the effects of sex steroids on the developing brain. Evidence shows that epigenetics plays a main role in the formation of enduring brain sex differences and that the estrogen receptor α (ESR1) is one of the implicated genes.
Aim
To analyze whether the methylation of region III (RIII) of the ESR1 promoter is involved in the biological basis of gender dysphoria.
Methods
We carried out a prospective study of the CpG methylation profile of RIII (−1,188 to −790 bp) of the ESR1 promoter using bisulfite genomic sequencing in a cisgender population (10 men and 10 women) and in a transgender population (10 trans men and 10 trans women), before and after 6 months of gender-affirming hormone treatment. Cisgender and transgender populations were matched by geographical origin, age, and sex. DNAs were treated with bisulfite, amplified, cloned, and sequenced. At least 10 clones per individual from independent polymerase chain reactions were sequenced. The analysis of 671 bisulfite sequences was carried out with the QUMA (QUantification tool for Methylation Analysis) program.
Outcomes
The main outcome of this study was RIII analysis using bisulfite genomic sequencing.
Results
We found sex differences in RIII methylation profiles in cisgender and transgender populations. Cismen showed a higher methylation degree than ciswomen at CpG sites 297, 306, 509, and at the total fragment (P ≤ .003, P ≤ .026, P ≤ .001, P ≤ .006). Transmen showed a lower methylation level than trans women at sites 306, 372, and at the total fragment (P ≤ .0001, P ≤ .018, P ≤ .0107). Before the hormone treatment, transmen showed the lowest methylation level with respect to cisgender and transgender populations, whereas transwomen reached an intermediate methylation level between both the cisgender groups. After the hormone treatment, transmen showed a statistically significant methylation increase, whereas transwomen showed a non-significant methylation decrease. After the hormone treatment, the RIII methylation differences between transmen and transwomen disappeared, and both transgender groups reached an intermediate methylation level between both the cisgender groups.
Clinical Implications
Clinical implications in the hormonal treatment of trans people.
Strengths & Limitations
Increasing the number of regions analyzed in the ESR1 promoter and increasing the number of tissues analyzed would provide a better understanding of the variation in the methylation pattern.
Conclusions
Our data showed sex differences in RIII methylation patterns in cisgender and transgender populations before the hormone treatment. Furthermore, before the hormone treatment, transwomen and transmen showed a characteristic methylation profile, different from both the cisgender groups. But the hormonal treatment modified RIII methylation in trans populations, which are now more similar to their gender. Therefore, our results suggest that the methylation of RIII could be involved in gender dysphoria.This work was supported by grants: Xunta de Galicia ED431 B 019/02 (EP), PGC2018-094919-B-C21 (AG), Ministerio de ciencia, innovación y Universidades PGC2018-094919-B-C22 (RF, EP). J. Cortés-Cortés was supported by a doctoral fellowship FPU 15/02558Xunta de Galicia ED431 B 019/0
Epigenetics Is Implicated in the Basis of Gender Incongruence: An Epigenome-Wide Association Analysis
[Abstract] Introduction: The main objective was to carry out a global DNA methylation analysis in a population with gender incongruence before gender-affirming hormone treatment (GAHT), in comparison to a cisgender population.
Methods: A global CpG (cytosine-phosphate-guanine) methylation analysis was performed on blood from 16 transgender people before GAHT vs. 16 cisgender people using the Illumina© Infinium Human Methylation 850k BeadChip, after bisulfite conversion. Changes in the DNA methylome in cisgender vs. transgender populations were analyzed with the Partek® Genomics Suite program by a 2-way ANOVA test comparing populations by group and their sex assigned at birth.
Results: The principal components analysis (PCA) showed that both populations (cis and trans) differ in the degree of global CpG methylation prior to GAHT. The 2-way ANOVA test showed 71,515 CpGs that passed the criterion FDR p < 0.05. Subsequently, in male assigned at birth population we found 87 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2) of which 22 were located in islands. The most significant CpGs were related to genes: WDR45B, SLC6A20, NHLH1, PLEKHA5, UBALD1, SLC37A1, ARL6IP1, GRASP, and NCOA6. Regarding the female assigned at birth populations, we found 2 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2), but none were located in islands. One of these CpGs, related to the MPPED2 gene, is shared by both, trans men and trans women. The enrichment analysis showed that these genes are involved in functions such as negative regulation of gene expression (GO:0010629), central nervous system development (GO:0007417), brain development (GO:0007420), ribonucleotide binding (GO:0032553), and RNA binding (GO:0003723), among others.
Strengths and Limitations: It is the first time that a global CpG methylation analysis has been carried out in a population with gender incongruence before GAHT. A prospective study before/during GAHT would provide a better understanding of the influence of epigenetics in this process.
Conclusion: The main finding of this study is that the cis and trans populations have different global CpG methylation profiles prior to GAHT. Therefore, our results suggest that epigenetics may be involved in the etiology of gender incongruence.Xunta de Galicia; ED431 B 019/02 (EP)
Ministerio de Ciencia, Innovación y Universidades; PGC2018-094919-B-C21 (AG) e PGC2018-094919-B-C22 (RF and EP)
Ghent University.; BOF interdisciplinary project (IOP003-18
The Biological Basis of Gender Incongruence
Gender incongruence (GI) is defined as an individual’s discontent with their assigned gender at birth and their identification with a gender other than that associated with their sex based on physical sex characteristics. The origin of GI appears to be multifactorial. From the extensive research that has been conducted over the past few years, four main factors have been identified as key mechanisms: genes, hormones, epigenetics, and the environment. One of the current hypotheses suggests that GI could be related to a different sexual differentiation of the brain as a result of changes in the DNA sequence of the estrogen receptors ERs and androgen receptor AR genes. These changes in the DNA sequence would imply a variability in the sensitivity of the hormone receptors, causing a genetic vulnerability
Implications of the Estrogen Receptor Coactivators SRC1 and SRC2 in the Biological Basis of Gender Incongruence
ABSTRACT: Introduction: Brain sexual differentiation results from the effects of sex steroids on the developing brain. The presumptive route for brain masculinization is the direct induction of gene expression via activation of the estrogen receptors α and β and the androgen receptor through their binding to ligands and to coactivators, regulating the transcription of multiple genes in a cascade effect. Aim: To analyze the implication of the estrogen receptor coactivators SRC-1, SRC-2, and SRC-3 in the genetic basis of gender incongruence. Main Outcome Measures: Analysis of 157 polymorphisms located at the estrogen receptor coactivators SRC-1, SRC-2, and SRC-3, in 94 transgender versus 94 cisgender individuals. Method: Using SNPStats software, the allele and genotype frequencies were analyzed by χ2, the strength of the association was measured by binary logistic regression, estimating the odds ratio for each genotype. Measurements of linkage disequilibrium and haplotype frequencies were also performed. Results: We found significant differences at level P < .05 in 8 polymorphisms that correspond to 5.09% of the total. Three were located in SRC-1 and 5 in SRC-2. The odds ratio analysis showed significant differences at level P < .05 for multiple patterns of inheritance. The polymorphisms analyzed were in linkage disequilibrium. The SRC-1 haplotypes CGA and CGG (global haplotype association P < .009) and the SRC-2 haplotypes GGTAA and GGTAG (global haplotype association P < .005) were overrepresented in the transgender population. Conclusion: The coactivators SRC-1 and SRC-2 could be considered as candidates for increasing the list of potential genes for gender incongruence. Ramírez KDV, Fernández R, Delgado-Zayas E, et al. Implications of the Estrogen Receptor Coactivators SRC1 and SRC2 in the Biological Basis of Gender Incongruence. Sex Med 2021;9:100368