4 research outputs found

    The eEF1γ Subunit Contacts RNA Polymerase II and Binds Vimentin Promoter Region

    Get PDF
    Here, we show that the eukaryotic translation elongation factor 1 gamma (eEF1γ) physically interacts with the RNA polymerase II (pol II) core subunit 3 (RPB3), both in isolation and in the context of the holo-enzyme. Importantly, eEF1γ has been recently shown to bind Vimentin mRNA. By chromatin immunoprecipitation experiments, we demonstrate, for the first time, that eEF1γ is also physically present on the genomic locus corresponding to the promoter region of human Vimentin gene. The eEF1γ depletion causes the Vimentin protein to be incorrectly compartmentalised and to severely compromise cellular shape and mitochondria localisation. We demonstrate that eEF1γ partially colocalises with the mitochondrial marker Tom20 and that eEF1γ depletion increases mitochondrial superoxide generation as well as the total levels of carbonylated proteins. Finally, we hypothesise that eEF1γ, in addition to its role in translation elongation complex, is involved in regulating Vimentin gene by contacting both pol II and the Vimentin promoter region and then shuttling/nursing the Vimentin mRNA from its gene locus to its appropriate cellular compartment for translation

    Ago1 and Ago2 differentially affect cell proliferation, motility and apoptosis when overexpressed in SH-SY5Y neuroblastoma cells

    Get PDF
    Argonaute are a conserved class of proteins central to the microRNA pathway. We have highlighted a novel and non-redundant function of Ago1 versus Ago2; the two core factors of the miRNA-associated RISC complex. Stable overexpression of Ago1 in neuroblastoma cells causes the cell cycle to slow down, a decrease in cellular motility and a stronger apoptotic response upon UV irradiation. These effects, together with a significant increase in p53 levels, suggest that Ago1 may act as a tumor-suppressor factor, a function also supported by GEO Profiles microarrays that inversely correlate Ago1 expression levels with cell proliferation rates. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved

    Delayed internalization and lack of recycling in a beta<sub>2</sub>-adrenergic receptor fused to the G protein alpha-subunit

    No full text
    <p>Abstract</p> <p>Background</p> <p>Chimeric proteins obtained by the fusion of a G protein-coupled receptor (GPCR) sequence to the N-terminus of the G protein α-subunit have been extensively used to investigate several aspects of GPCR signalling. Although both the receptor and the G protein generally maintain a fully functional state in such polypeptides, original observations made using a chimera between the β<sub>2</sub>-adrenergic receptor (β<sub>2</sub>AR) and Gα<sub>s </sub>indicated that the fusion to the α-subunit resulted in a marked reduction of receptor desensitization and down-regulation. To further investigate this phenomenon, we have compared the rates of internalization and recycling between wild-type and Gα<sub>s</sub>-fused β<sub>2</sub>AR.</p> <p>Results</p> <p>The rate of agonist-induced internalization, measured as the disappearance of cell surface immunofluorescence in HEK293 cells permanently expressing N-terminus tagged receptors, was reduced three-fold by receptor-G protein fusion. However, both fused and non-fused receptors translocated to the same endocytic compartment, as determined by dual-label confocal analysis of cells co-expressing both proteins and transferrin co-localization.</p> <p>Receptor recycling, determined as the reversion of surface immunofluorescence following the addition of antagonist to cells that were previously exposed to agonist, markedly differed between wild-type and fused receptors. While most of the internalized β<sub>2</sub>AR returned rapidly to the plasma membrane, β<sub>2</sub>AR-Gα<sub>s </sub>did not recycle, and the observed slow recovery for the fusion protein immunofluorescence was entirely accounted for by protein synthesis.</p> <p>Conclusion</p> <p>The covalent linkage between β<sub>2</sub>AR and Gα<sub>s </sub>does not appear to alter the initial endocytic translocation of the two proteins, although there is reduced efficiency. It does, however, completely disrupt the process of receptor and G protein recycling. We conclude that the physical separation between receptor and Gα is not necessary for the transit to early endosomes, but is an essential requirement for the correct post-endocytic sorting and recycling of the two proteins.</p
    corecore