9,298 research outputs found

    Evaluating semi-automatic annotation of domestic energy consumption as a memory aid

    No full text
    Frequent feedback about energy consumption can help conservation, one of the current global challenges. Such feedback is most helpful if users can relate it to their own day-to-day activities. In earlier work we showed that manual annotation of domestic energy consumption logs aids users to make such connection and discover patterns they were not aware of. In this poster we report how we augmented manual annotation with machine learning classification techniques. We propose the design of a lab study to evaluate the system, extending methods used to evaluate context aware memory aids, and we present the results of a pilot with 5 participants

    Spatially dependent Kondo effect in Quantum Corrals

    Full text link
    We study the Kondo screening of a single magnetic impurity inside a non-magnetic quantum corral located on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes lead to a spatially dependent Kondo effect whose signatures are spatial variations of the Kondo temperature, TKT_K. Moreover, we predict that the Kondo screening is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns. Our results open new possibilities to manipulate and explore the Kondo effect by using quantum corrals.Comment: 4 pages 5 figure

    Dante's Inferno

    Full text link
    We present a simple two-field model of inflation and show how to embed it in string theory as a straightforward generalization of axion monodromy models. Phenomenologically, the predictions are equivalent to those of chaotic inflation, and in particular include observably large tensor modes. The whole high-scale large-field inflationary dynamics takes place within a region of field space that is parametrically subplanckian in diameter, hence improving our ability to control quantum corrections and achieve slow-roll inflation

    Perturbation of matrices and non-negative rank with a view toward statistical models

    Full text link
    In this paper we study how perturbing a matrix changes its non-negative rank. We prove that the non-negative rank is upper-semicontinuos and we describe some special families of perturbations. We show how our results relate to Statistics in terms of the study of Maximum Likelihood Estimation for mixture models.Comment: 13 pages, 3 figures. A theorem has been rewritten, and some improvements in the presentations have been implemente

    Searching for a continuum 4D field theory arising from a 5D non-abelian gauge theory

    Get PDF
    The anisotropic 5D SU(2) Yang-Mills model has been widely investigated on the lattice during the last decade. In the case where all dimensions are large in size, it was previously claimed that there is a new phase in the phase diagram, called the Layer phase. In this phase, the gauge fields would be localized on 4D layers. Previous works claim that the phase transition to the Layer phase is of second order, which would allow a continuum limit to be taken. We present the extension of the previous work to large lattices, for which we found a first order phase transition. This leaves the scenario that this 5D theory can be dimensionally reduced to a continuum 4D field theory, doubtful.Comment: 6 pages, 2 figures - talk presented at the 31st International Symposium on Lattice Field Theory - Lattice 2013, Mainz, German
    • …
    corecore