33 research outputs found

    Decision-Feedback Detection Strategy for Nonlinear Frequency-Division Multiplexing

    Full text link
    By exploiting a causality property of the nonlinear Fourier transform, a novel decision-feedback detection strategy for nonlinear frequency-division multiplexing (NFDM) systems is introduced. The performance of the proposed strategy is investigated both by simulations and by theoretical bounds and approximations, showing that it achieves a considerable performance improvement compared to previously adopted techniques in terms of Q-factor. The obtained improvement demonstrates that, by tailoring the detection strategy to the peculiar properties of the nonlinear Fourier transform, it is possible to boost the performance of NFDM systems and overcome current limitations imposed by the use of more conventional detection techniques suitable for the linear regime

    Why Noise and Dispersion may Seriously Hamper Nonlinear Frequency-Division Multiplexing

    Full text link
    The performance of optical fiber systems based on nonlinear frequency-division multiplexing (NFDM) or on more conventional transmission techniques is compared through numerical simulations. Some critical issues affecting NFDM systems-namely, the strict requirements needed to avoid burst interaction due to signal dispersion and the unfavorable dependence of performance on burst length-are investigated, highlighting their potentially disruptive effect in terms of spectral efficiency. Two digital processing techniques are finally proposed to halve the guard time between NFDM symbol bursts and reduce the size of the processing window at the receiver, increasing spectral efficiency and reducing computational complexity.Comment: The manuscript has been submitted to Photonics Technology Letters for publicatio

    A Novel Detection Strategy for Nonlinear Frequency-Division Multiplexing

    Full text link
    A novel decision feedback detection strategy exploiting a causality property of the nonlinear Fourier transform is introduced. The novel strategy achieves a considerable performance improvement compared to previously adopted strategies in terms of Q-factor.Comment: The work has been submitted to the Optical Fiber Communication (OFC) Conference 201

    Improved Detection Strategies for Nonlinear Frequency-Division Multiplexing

    Full text link
    Two novel detection strategies for nonlinear Fourier transform-based transmission schemes are proposed. We show, through numerical simulations, that both strategies achieve a good performance improvement (up to 3 dB and 5 dB) with respect to conventional detection, respectively without or only moderately increasing the computational complexity of the receiver.Comment: This work will be presented at PIERS 2018 in Toyama, Japan, and has been submitted for publication in the conference proceeding

    Nonlinear Probabilistic Constellation Shaping with Sequence Selection

    Full text link
    Probabilistic shaping is a pragmatic approach to improve the performance of coherent optical fiber communication systems. In the nonlinear regime, the advantages offered by probabilistic shaping might increase thanks to the opportunity to obtain an additional nonlinear shaping gain. Unfortunately, the optimization of conventional shaping techniques, such as probabilistic amplitude shaping (PAS), yields a relevant nonlinear shaping gain only in scenarios of limited practical interest. In this manuscript we use sequence selection to investigate the potential, opportunities, and challenges offered by nonlinear probabilistic shaping. First, we show that ideal sequence selection is able to provide up to 0.13 bit/s/Hz gain with respect to PAS with an optimized blocklength. However, this additional gain is obtained only if the selection metric accounts for the signs of the symbols: they must be known to compute the selection metric, but there is no need to shape them. Furthermore, we show that the selection depends in a non-critical way on the symbol rate and link length: the sequences selected for a certain scenario still provide a relevant gain if these are modified. Then, we analyze and compare several practical implementations of sequence selection by taking into account interaction with forward error correction (FEC) and complexity. Overall, the single block and the multi block FEC-independent bit scrambling are the best options, with a gain up to 0.08 bit/s/Hz. The main challenge and limitation to their practical implementation remains the evaluation of the metric, whose complexity is currently too high. Finally, we show that the nonlinear shaping gain provided by sequence selection persists when carrier phase recovery is included.Comment: The manuscript has been submitted for publication to the Journal of Lightwave Technolog

    On the Nonlinear Shaping Gain with Probabilistic Shaping and Carrier Phase Recovery

    Full text link
    The performance of different probabilistic amplitude shaping (PAS) techniques in the nonlinear regime is investigated, highlighting its dependence on the PAS block length and the interaction with carrier phase recovery (CPR). Different PAS implementations are considered, based on different distribution matching (DM) techniques-namely, sphere shaping, shell mapping with different number of shells, and constant composition DM-and amplitude-to-symbol maps. When CPR is not included, PAS with optimal block length provides a nonlinear shaping gain with respect to a linearly optimized PAS (with infinite block length); among the considered DM techniques, the largest gain is obtained with sphere shaping. On the other hand, the nonlinear shaping gain becomes smaller, or completely vanishes, when CPR is included, meaning that in this case all the considered implementations achieve a similar performance for a sufficiently long block length. Similar results are obtained in different link configurations (1x180km, 15x80km, and 27x80km single-mode-fiber links), and also including laser phase noise, except when in-line dispersion compensation is used. Furthermore, we define a new metric, the nonlinear phase noise (NPN) metric, which is based on the frequency resolved logarithmic perturbation models and explains the interaction of CPR and PAS. We show that the NPN metric is highly correlated with the performance of the system. Our results suggest that, in general, the optimization of PAS in the nonlinear regime should always account for the presence of a CPR algorithm. In this case, the reduction of the rate loss (obtained by using sphere shaping and increasing the DM block length) turns out to be more important than the mitigation of the nonlinear phase noise (obtained by using constant-energy DMs and reducing the block length), the latter being already granted by the CPR algorithm.Comment: Accepter for publication to the Journal of Lightwave Technologies on January 202

    New Lower Bounds on the Capacity of Optical Fiber Channels via Optimized Shaping and Detection

    Full text link
    Constellation shaping is a practical and effective technique to improve the performance and the rate adaptivity of optical communication systems. In principle, it could also be used to mitigate the impact of nonlinear effects, possibly increasing the information rate beyond the current limit dictated by fiber nonlinearity. However, this appealing idea is frustrated by the difficulty of designing an effective shaping strategy that takes into account the nonlinearity and long memory of the fiber channel, as well as the possible interplay with other nonlinearity mitigation strategies. As a result, only little progress has been made so far, while the optimal shaping distribution and the ultimate channel capacity remain unknown. In this work, we describe a novel technique to optimize the shaping distribution in a very general setting and high-dimensional space. For a simplified block-memoryless nonlinear optical channel, the capacity lower bound obtained by the proposed technique can be expressed analytically, establishing the conditions for an unbounded growth of capacity with power. In a more realistic scenario, the technique can be implemented by a rejection sampling algorithm driven by a suitable cost function, and the corresponding achievable information rate estimated numerically. The combination of the proposed technique with an improved (non-Gaussian) decoding metric yields a new capacity lower bound for the dual-polarization WDM channel.Comment: Submitted to IEEE Journal of Lightwave Technology on November 30th, 202
    corecore