77 research outputs found

    Towards homogenization of total body irradiation practices in pediatric patients across SIOPE affiliated centers: a survey by the SIOPE radiation oncology working group

    Get PDF
    Pediatric; Radiotherapy; Stem cell transplantationPediatria; Radioteràpia; Trasplantament de cèl·lules marePediatría; Radioterapia; Trasplante de células madreBackground and purpose To reduce relapse risk, Total Body Irradiation (TBI) is part of conditioning regimens for hematopoietic stem cell transplantation (HSCT) in pediatric acute leukemia. The study purpose was to evaluate clinical practices regarding TBI, such as fractionation, organ shielding and delivery techniques, among SIOPE affiliated radiotherapy centers. Methods An electronic survey was sent out to 233 SIOPE affiliated centers, containing 57 questions about clinical practice of TBI. Surveys could be answered anonymously. Results From over 25 countries, 82 responses were collected. For TBI-performing centers, 40/48 irradiated ≤10 pediatric patients annually (range: 1–2 to >25). Most indications concerned acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). Four different fractionation schedules were used, of which 12 Gy in 6 fractions was applied in 91% for ALL and 86% for AML. Dose reduction to the lungs, mostly to a mean dose of 8–10 Gy, was applied by 28/33 centers for ALL and 19/21 centers for AML, in contrast to much less applied dose reduction to the kidneys (7/33 ALL and 7/21 AML), thyroid (2/33 ALL and 2/21 AML), liver (4/33 ALL and 3/21 AML) and lenses (4/33 ALL and 4/21 AML). Conventional TBI techniques were used by 24/29 responding centers, while 5/29 used advanced optimized planning techniques. Conclusion Across SIOPE, there is a high level of uniformity in fractionation and use of lung shielding. Practices vary regarding other organs-at-risk shielding and implementation of advanced techniques. A SIOPE radiotherapy working group will be established to define international guidelines for pediatric TBI

    ESTRO ACROP and SIOPE recommendations for myeloablative Total Body Irradiation in children

    Get PDF
    Consensus recommendations; Pediatric; Total Body IrradiationRecomanacions de consens; Pediatria; Irradiació corporal totalRecomendaciones de consenso; Pediatría; Irradiación corporal totalBackground and purpose Myeloablative Total Body Irradiation (TBI) is an important modality in conditioning for allogeneic hematopoietic stem cell transplantation (HSCT), especially in children with high-risk acute lymphoblastic leukemia (ALL). TBI practices are heterogeneous and institution-specific. Since TBI is associated with multiple late adverse effects, recommendations may help to standardize practices and improve the outcome versus toxicity ratio for children. Material and methods The European Society for Paediatric Oncology (SIOPE) Radiotherapy TBI Working Group together with ESTRO experts conducted a literature search and evaluation regarding myeloablative TBI techniques and toxicities in children. Findings were discussed in bimonthly virtual meetings and consensus recommendations were established. Results Myeloablative TBI in HSCT conditioning is mostly performed for high-risk ALL patients or patients with recurring hematologic malignancies. TBI is discouraged in children <3–4 years old because of increased toxicity risk. Publications regarding TBI are mostly retrospective studies with level III–IV evidence. Preferential TBI dose in children is 12–14.4 Gy in 1.6–2 Gy fractions b.i.d. Dose reduction should be considered for the lungs to <8 Gy, for the kidneys to ≤10 Gy, and for the lenses to <12 Gy, for dose rates ≥6 cGy/min. Highly conformal techniques i.e. TomoTherapy and VMAT TBI or Total Marrow (and/or Lymphoid) Irradiation as implemented in several centers, improve dose homogeneity and organ sparing, and should be evaluated in studies. Conclusions These ESTRO ACROP SIOPE recommendations provide expert consensus for conventional and highly conformal myeloablative TBI in children, as well as a supporting literature overview of TBI techniques and toxicities

    Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours

    Get PDF
    Purpose: To assess the feasibility of magnetic resonance imaging (MRI)-only treatment planning for photon and proton radiotherapy in children with abdominal tumours. Materials and methods: The study was conducted on 66 paediatric patients with Wilms' tumour or neuroblastoma (age 4 +/- 2 years) who underwent MR and computed tomography (CT) acquisition on the same day as part of the clinical protocol. MRI intensities were converted to CT Hounsfield units (HU) by means of a UNet-like neural network trained to generate synthetic CT (sCT) from T1- and T2-weighted MR images. The CT-to-sCT image similarity was evaluated by computing the mean error (ME), mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and Dice similarity coefficient (DSC). Synthetic CT dosimetric accuracy was verified against CT-based dose distributions for volumetric-modulated arc therapy (VMAT) and intensity-modulated pencil-beam scanning (PBS). Relative dose differences (D-diff) in the internal target volume and organs-at-risk were computed and a three-dimensional gamma analysis (2 mm, 2%) was performed. Results: The average +/- standard deviation ME was -5 +/- 12 HU, MAE was 57 +/- 12 HU, PSNR was 30.3 +/- 1. 6 dB and DSC was 76 +/- 8% for bones and 92 +/- 9% for lungs. Average D-diff were 99% (range [85; 100]%) for VMAT and >96% (range [87; 100]%) for PBS. Conclusion: The deep learning-based model generated accurate sCT from planning T1w- and T2w-MR images. Most dosimetric differences were within clinically acceptable criteria for photon and proton radiotherapy, demonstrating the feasibility of an MRI-only workflow for paediatric patients with abdominal tumours. (C) 2020 The Authors. Published by Elsevier B.V

    Dosimetric feasibility of hypofractionation for metastatic bone/bone marrow lesions from paediatric solid tumours

    Get PDF
    Background and purpose: The aim of this study was to determine the feasibility of hypofractionated schedules for metastatic bone/bone marrow lesions in children and to investigate dosimetric differences to the healthy surrounding tissues compared to conventional schedules. Methods: 27 paediatric patients (mean age, 7 years) with 50 metastatic bone/bone marrow lesions (n = 26 cranial, n = 24 extra-cranial) from solid primary tumours (neuroblastoma and sarcoma) were included. The PTV was a 2 mm expansion of the GTV. A prescription dose of 36 and 54 Gy EQD2 α / β =10 was used for neuroblastoma and sarcoma lesions, respectively. VMAT plans were optimized for each single lesion using different fractionation schedules: conventional (30/20 fractions, V 95% ≥ 99%, D 0.1cm 3 ≤ 107%) and hypofractionated (15/10/5/3 fractions, V 100% ≥ 95%, D 0.1cm 3 ≤ 120%) . Relative EQD2 differences in OARs D mean between the different schedules were compared. Results: PTV coverage was met for all plans independently of the fractionation schedule and for all lesions (V 95% range 95.5–100%, V 100% range 95.1–100%), with exception of the vertebrae (V 100% range 63.5–91.0%). For most OARs, relative mean reduction in the D mean was seen for the hypofractionated plans compared to the conventional plans, with largest sparing in the 5 fractions (< 43%) followed by the 3 fractions schedule (< 40%). In case of PTV overlap with an OAR, a significant increase in dose for the OAR was observed with hypofractionation. Conclusions: For the majority of the cases, iso-effective plans with hypofractionation were feasible with similar or less dose in the OARs. The most suitable fractionation schedule should be personalised depending on the spatial relationship between the PTV and OARs and the prescription dose

    Influence of eye movement on lens dose and optic nerve target coverage during craniospinal irradiation

    Get PDF
    PURPOSE: Optic nerves are part of the craniospinal irradiation (CSI) target volume. Modern radiotherapy techniques achieve highly conformal target doses while avoiding organs-at-risk such as the lens. The magnitude of eye movement and its influence on CSI target- and avoidance volumes are unclear. We aimed to evaluate the movement-range of lenses and optic nerves and its influence on dose distribution of several planning techniques. METHODS: Ten volunteers underwent MRI scans in various gaze directions (neutral, left, right, cranial, caudal). Lenses, orbital optic nerves, optic discs and CSI target volumes were delineated. 36-Gy cranial irradiation plans were constructed on synthetic CT images in neutral gaze, with Volumetric Modulated Arc Therapy, pencil-beam scanning proton therapy, and 3D-conventional photons. Movement-amplitudes of lenses and optic discs were analyzed, and influence of gaze direction on lens and orbital optic nerve dose distribution. RESULTS: Mean eye structures’ shift from neutral position was greatest in caudal gaze; −5.8±1.2 mm (±SD) for lenses and 7.0±2.0 mm for optic discs. In 3D-conventional plans, caudal gaze decreased Mean Lens Dose (MLD). In VMAT and proton plans, eye movements mainly increased MLD and diminished D98 orbital optic nerve (D98(OON)) coverage; mean MLD increased up to 5.5 Gy [total ΔMLD range −8.1 to 10.0 Gy], and mean D98(OON) decreased up to 3.3 Gy [total ΔD98(OON) range −13.6 to 1.2 Gy]. VMAT plans optimized for optic disc Internal Target Volume and lens Planning organ-at-Risk Volume resulted in higher MLD over gaze directions. D98(OON) became ≥95% of prescribed dose over 95/100 evaluated gaze directions, while all-gaze bilateral D98(OON) significantly changed in 1 of 10 volunteers. CONCLUSION: With modern CSI techniques, eye movements result in higher lens doses and a mean detriment for orbital optic nerve dose coverage of <10% of prescribed dose

    Dosimetric feasibility of direct post-operative MR-Linac-based stereotactic radiosurgery for resection cavities of brain metastases

    Get PDF
    BACKGROUND: Post-operative radiosurgery (SRS) of brain metastases patients is typically planned on a post-recovery MRI, 2-4 weeks after resection. However, the intracranial metastasis may (re-)grow in this period. Planning SRS directly on the post-operative MRI enables shortening this time interval, anticipating the start of adjuvant systemic therapy, and so decreasing the chance of extracranial progression. The MRI-Linac (MRL) allows the simultaneous execution of the post-operative MRI and SRS treatment. The aim of this work was investigating the dosimetric feasibility of MRL-based post-operative SRS. METHODS: MRL treatments based on the direct post-operative MRI were simulated, including thirteen patients with resectable single brain metastases. The gross tumor volume (GTV) was contoured on the direct post-operative scans and compared to the post-recovery MRI GTV. Three plans for each patient were created: a non-coplanar VMAT CT-Linac plan (ncVMAT) and a coplanar IMRT MRL plan (cIMRT) on the direct post-operative MRI, and a ncVMAT plan on the post-recovery MRI as the current clinical standard. RESULTS: Between the direct post-operative and post-recovery MRI, 15.5 % of the cavities shrunk by > 2 cc, and 46 % expanded by ≥ 2 cc. Although the direct post-operative cIMRT plans had a higher median gradient index (3.6 vs 2.7) and median V3Gy of the skin (18.4 vs 1.1 cc) compared to ncVMAT plans, they were clinically acceptable. CONCLUSION: Direct post-operative MRL-based SRS for resection cavities of brain metastases is dosimetrically acceptable, with the advantages of increased patient comfort and logistics. Clinical benefit of this workflow should be investigated given the dosimetric plausibility

    Surface guided radiotherapy practice in paediatric oncology: a survey on behalf of the SIOPE radiation oncology working group

    Get PDF
    INTRODUCTION: Surface guided radiotherapy (SGRT) is increasingly being implemented to track patient's surface movement and position during radiation therapy. However, limited information is available on the SGRT use in paediatrics. The aim of this double survey was to map SIOPE (European Society for Paediatric Oncology)-affiliated centres using SGRT and to gain information on potential indications, observed, or expected benefits. METHODS: A double online survey was distributed to 246 SIOPE-affiliated radiotherapy (RT) centres. Multiple choices, yes/no, and open answers were included. The first survey (41 questions) was active from February to March 2021. A shortened version (13 questions) was repeated in March 2023 to detect trends in SGRT use within the same community. RESULTS: Respectively, 76/142 (54%) and 28/142 (20%) responding centres used and planned to use SGRT clinically, including 4/34 (12%) new centres since 2021. Among the SGRT users, 33/76 (43%) already applied this technology to paediatric treatments. The main benefits of improved patient comfort, better monitoring of intrafraction motion, and more accurate initial patient set-up expected by future users did not differ from current SGRT-users (P = .893). Among non-SGRT users, the main hurdles to implement SGRT were costs and time for installation. In paediatrics, SGRT is applied to all anatomical sites. CONCLUSION: This work provides information on the practice of SGRT in paediatrics across SIOPE-affiliated RT centres which can serve as a basis for departments when considering the purchase of SGRT systems. ADVANCES IN KNOWLEDGE: Since little information is available in the literature on the use of SGRT in paediatrics, the results of this double survey can serve as a basis for departments treating children when considering the purchase of an SGRT system

    Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy

    Get PDF
    Background and Purpose To enable accurate magnetic resonance imaging (MRI)-based dose calculations, synthetic computed tomography (sCT) images need to be generated. We aim at assessing the feasibility of dose calculations from MRI acquired with a heterogeneous set of imaging protocol for paediatric patients affected by brain tumours. Materials and methods Sixty paediatric patients undergoing brain radiotherapy were included. MR imaging protocols varied among patients, and data heterogeneity was maintained in train/validation/test sets. Three 2D conditional generative adversarial networks (cGANs) were trained to generate sCT from T1-weighted MRI, considering the three orthogonal planes and its combination (multi-plane sCT). For each patient, median and standard deviation (σ) of the three views were calculated, obtaining a combined sCT and a proxy for uncertainty map, respectively. The sCTs were evaluated against the planning CT in terms of image similarity and accuracy for photon and proton dose calculations.Results A mean absolute error of 61±14 HU (mean±1σ) was obtained in the intersection of the body contours between CT and sCT. The combined multi-plane sCTs performed better than sCTs from any single plane. Uncertainty maps highlighted that multi-plane sCTs differed at the body contours and air cavities. A dose difference of -0.1±0.3% and 0.1±0.4% was obtained on the D>90% of the prescribed dose and mean γ2%,2mm pass-rate of 99.5±0.8% and 99.2±1.1% for photon and proton planning, respectively. Conclusion Accurate MR-based dose calculation using a combination of three orthogonal planes for sCT generation is feasible for paediatric brain cancer patients, even when training on a heterogeneous dataset

    Brain and Head-and-Neck MRI in Immobilization Mask: A Practical Solution for MR-Only Radiotherapy

    Get PDF
    In brain/head-and-neck radiotherapy (RT), thermoplastic immobilization masks guarantee reproducible patient positioning in treatment position between MRI, CT, and irradiation. Since immobilization masks do not fit in the diagnostic MR head/head-and-neck coils, flexible surface coils are used for MRI imaging in clinical practice. These coils are placed around the head/neck, in contact with the immobilization masks. However, the positioning of these flexible coils is technician dependent, thus leading to poor image reproducibility. Additionally, flexible surface coils have an inferior signal-to-noise-ratio (SNR) compared to diagnostic coils. The aim of this work was to create a new immobilization setup which fits into the diagnostic MR coils in order to enhance MR image quality and reproducibility. For this purpose, a practical immobilization setup was constructed. The performances of the standard clinical and the proposed setups were compared with four tests: SNR, image quality, motion restriction, and reproducibility of inter-fraction subject positioning. The new immobilization setup resulted in 3.4 times higher SNR values on average than the standard setup, except directly below the flexible surface coils where similar SNR was observed. Overall, the image quality was superior for brain/head-and-neck images acquired with the proposed RT setup. Comparable motion restriction in feet-head/left-right directions (maximum motion ≈1 mm) and comparable inter-fraction repositioning accuracy (mean inter-fraction movement 1 ± 0.5 mm) were observed for the standard and the new setup

    Treatment robustness of total body irradiation with volumetric modulated arc therapy

    Get PDF
    This study evaluated the robustness of multi-isocenter Volumetric Modulated Arc Therapy Total Body Irradiation dose distribution in the overlapping region between the head-first and feet-first computed tomography scans, considering the longitudinal isocenter shifts recorded during treatment delivery. For 15 out of 22 patients, the dose distribution in the overlapping region fulfilled all three the robustness criteria. The overlapping region dose distribution of the remaining 7 cases fulfilled two robustness criteria. The dose distribution was found to be robust against daily recorded longitudinal isocenter shifts, as a consequence of the patient position verification procedure, of up to 16 mm
    • …
    corecore