126 research outputs found

    Nature-derived compounds modulating Wnt/β-catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases

    Get PDF
    Abstract The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcunim, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds

    Glycovaccine Design: Optimization of Model and Antitubercular Carrier Glycosylation via Disuccinimidyl Homobifunctional Linker

    Get PDF
    Conjugation via disuccinimidyl homobifunctional linkers is reported in the literature as a convenient approach for the synthesis of glycoconjugate vaccines. However, the high tendency for hydrolysis of disuccinimidyl linkers hampers their extensive purification, which unavoidably results in side-reactions and non-pure glycoconjugates. In this paper, conjugation of 3-aminopropyl saccharides via disuccinimidyl glutarate (DSG) was exploited for the synthesis of glycoconjugates. A model protein, ribonuclease A (RNase A), was first considered to set up the conjugation strategy with mono- to tri- mannose saccharides. Through a detailed characterization of synthetized glycoconjugates, purification protocols and conjugation conditions have been revised and optimized with a dual aim: ensure high sugar-loading and avoid the presence of side reaction products. An alternative purification approach based on hydrophilic interaction liquid chromatography (HILIC) allowed the formation of glutaric acid conjugates to be avoided, and a design of experiment (DoE) approach led to optimal glycan loading. Once its suitability was proven, the developed conjugation strategy was applied to the chemical glycosylation of two recombinant antigens, native Ag85B and its variant Ag85B-dm, that are candidate carriers for the development of a novel antitubercular vaccine. Pure glycoconjugates (≥99.5%) were obtained. Altogether, the results suggest that, with an adequate protocol, conjugation via disuccinimidyl linkers can be a valuable approach to produce high sugar-loaded and well-defined glycovaccines

    An enzymatic flow-based preparative route to vidarabine

    Get PDF
    The bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from Clostridium perfringens (CpUP) and a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), was re-designed under continuous-flow conditions. Glyoxyl–agarose and EziGTM1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow. Taking into account the substrate specificity of CpUP and AhPNP, the results obtained pave the way to the use of the CpUP/AhPNP-based bioreactor for the preparation of other purine nucleosides

    Immobilized enzyme reactors based on nucleoside phosphorylases and 2′-deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues

    Get PDF
    In this work, a mono- and a bi-enzymatic analytical immobilized enzyme reactors (IMERs) were developed as prototypes for biosynthetic purposes and their performances in the in-flow synthesis of nucleoside analogues of pharmaceutical interest were evaluated. Two biocatalytic routes based on nucleoside 2′-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT) and uridine phosphorylase from Clostridium perfrigens (CpUP)/purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) were investigated in the synthesis of 2′-deoxy, 2′,3′-dideoxy and arabinonucleoside derivatives. LrNDT-IMER catalyzed the synthesis of 5-fluoro-2′-deoxyuridine and 5-iodo-2′-deoxyuridine in 65–59% conversion yield, while CpUP/AhPNP-IMER provided the best results for the preparation of arabinosyladenine (60% conversion yield). Both IMERs proved to be promising alternatives to chemical routes for the synthesis of nucleoside analogues. The developed in-flow system represents a powerful tool for the fast production on analytical scale of nucleosides for preliminary biological tests

    Sviluppo di nuove fasi stazionarie chirali di natura proteica

    No full text
    Dottorato di ricerca in chimica e tecnologia farmaceutiche. 12. ciclo. A.a. 1996-99. Coordinatore G. Pagani. Tutore G. CaccialanzaConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Immobilized trypsin systems coupled on-line to separation methods: recent developments and analytical applications

    No full text
    The ability to rapidly and efficiently digest and identify an unknown protein is of great utility for proteome studies. Identification of proteins via peptide mapping is generally accomplished through proteolytic digestion with enzymes such as trypsin. Limitations of this approach consist in manual sample manipulation steps and extended reaction times for proteolytic digestion. The use of immobilized trypsin for cleavage of proteins is advantageous in comparison with application of its soluble form. Enzymes can be immobilized on different supports and used in flow systems such as immobilized enzyme reactors (IMERs). This review reports applications of immobilized trypsin reactors in which the IMER has been integrated into separation systems such as reversed-phase liquid chromatography or capillary electrophoresis, prior to MS analysis. Immobilization procedures including supports, mode of integration into separation systems, and methods are described
    • …
    corecore